1210 Midterm 2024

1. Use the principle of mathematical induction to show that for $n \geq 1$

$$
1 \cdot 3 + 2 \cdot 4 + \dots + n(n+2) = \frac{n(n+1)(2n+7)}{6}.
$$

When $n = 1$: L.S.=1 · 3 = 3 R.S.= $\frac{1(2)(9)}{6} = 3$ Hence, the result is valid for $n = 1$. Assume that the result is valid for some integer $k \geq 1$; that is,

$$
1 \cdot 3 + 2 \cdot 4 + \dots + k(k+2) = \frac{k(k+1)(2k+7)}{6}.
$$

We must now prove that the result is valid for $k + 1$; that is, we must prove that

$$
1 \cdot 3 + 2 \cdot 4 + \dots + (k+1)(k+3) = \frac{(k+1)(k+2)(2k+9)}{6}.
$$

The left side is equal to

$$
[1 \cdot 3 + 2 \cdot 4 + \dots + k(k+2)] + (k+1)(k+3) = \frac{k(k+1)(2k+7)}{6} + (k+1)(k+3)
$$

= $\left(\frac{k+1}{6}\right) [k(2k+7) + 6(k+3)]$
= $\left(\frac{k+1}{6}\right) (2k^2 + 13k + 18)$
= $\frac{(k+2)(k+2)(2k+9)}{6}$.

Since this is the right side of what we have to prove, the result is valid for $k + 1$, and by the principle of mathematical induction, the result is valid for all $n \geq 1$.

2. Let $S_n = 1 \cdot 3 + 2 \cdot 4 + \cdots + n(n+2)$. Write S_n in sigma notation.

In sigma notation,

$$
1 \cdot 3 + 2 \cdot 4 + \dots + n(n+2) = \sum_{k=1}^{n} k(k+2).
$$

3. Compute
$$
\frac{4-3i}{2+i} + \overline{3+4i} \cdot (2i)
$$
.
\n
$$
\frac{4-3i}{2+i} + \overline{3+4i} \cdot (2i) = \frac{4-3i}{2+i} \cdot \frac{2-i}{2-i} + (3-4i)(2i) = \frac{5-10i}{5} + 8 + 6i = 9 + 4i
$$

4. Compute $(\sqrt{3} - i)^{14}$. Write your answer in polar form using the principal value of the argument.

Since
$$
\sqrt{3} - i = 2e^{-\pi i/6}
$$
,
\n $(\sqrt{3} - i)^{14} = 2^{14}e^{-14\pi i/6} = 2^{14}e^{-7\pi i/3} = 2^{14}e^{-\pi i/3} = 2^{14} [\cos(-\pi/3) + i \sin(-\pi/3)].$

- **5.** Let $P(x) = 8x^3 + 2x^2 + x + 3$.
	- (a) Using Descartes' rules of signs, determine the number of possible positive zeros and the number of negative zeros.
	- (b) Using the Bounds Theorem, determine the bound on the moduli ot the zeros.
	- (c) It is given that $P(-3/4) = 0$. Find all zeros of $P(x)$

(a) Since $P(x)$ has no sign changes, $P(x)$ has no positive zeros. Since $P(-x) = -8x^3 + 2x^2 - x + 3$ has 3 sign changes, $P(x)$ has either 3 or 1 negative zero.

- (b) According to the Bounds Theorem, $|x| < \frac{3}{8} + 1 = \frac{11}{8}$.
- (c) Since $x = -3/4$ is a zero, $4x + 3$ must be a factor of $P(x)$, and

$$
P(x) = (4x + 3)(2x2 - x + 1).
$$

The other two zeros are $x = \frac{1 \pm \sqrt{1 - 8}}{4} = \frac{1}{4} \pm \frac{1}{4}$ $\sqrt{7}$ $\frac{1}{4}i$.

6. Let $\mathbf{A} = \begin{pmatrix} 1 & -2 & -1 \\ 2 & 3 & 4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 3 & -5 \\ 1 & 2 \end{pmatrix}$, and $\mathbf{C} =$ $\sqrt{ }$ \mathbf{I} $1 -2$ 2 3 4 2 \setminus . Compute the following if they are defined. If they are not, explain why not. Be specific.

(a) **AC** − 3**B** (b) (**CA**)**B** (c) **CA** + **I**³

(a) $AC - 3B = \begin{pmatrix} -7 & -10 \\ 24 & 13 \end{pmatrix} - 3\begin{pmatrix} 3 & -5 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} -16 & 5 \\ 21 & 7 \end{pmatrix}$ (b) **CA** is a 3×3 matrix. Since **B** is 2×2 , the product $(CA)B$ is not defined. (c) **CA** + **I**₃ = $\begin{pmatrix} -3 & -8 & -9 \\ 8 & 5 & 10 \end{pmatrix}$ $8 -2 4$ $\overline{ }$ $+$ $\sqrt{ }$ \mathbf{I} 100 010 001 $\overline{ }$ $\Big\} =$ $\begin{pmatrix} -2 & -8 & -9 \\ 8 & 6 & 10 \end{pmatrix}$ $8 -2 5$ \setminus \perp

7. For the points $P(\lambda, 2, -1)$, $Q(2, 1, -1)$, and $R(-1, 1, 2)$, where λ is a real number, either find all values of λ such $\angle PQR = \pi/3$ (60°), or show that such λ do not exist.

Vector $\mathbf{QP} = \langle \lambda - 2, 1, 0 \rangle$, and $\mathbf{QR} = \langle -3, 0, 3 \rangle$. Since

$$
\mathbf{QP} \cdot \mathbf{QR} = |\mathbf{QP}| |\mathbf{QR}| \cos \angle PQR,
$$

it follows that

$$
-3(\lambda - 2) = \sqrt{(\lambda - 2)^2 + 1}\sqrt{18} \left(\frac{1}{2}\right) = \sqrt{(\lambda - 2)^2 + 1} \left(\frac{3}{\sqrt{2}}\right).
$$

When we divide by 3, and square both sides of the equation,

$$
2(\lambda - 2)^2 = (\lambda - 2)^2 + 1 \qquad \Longrightarrow \qquad (\lambda - 2)^2 = 1 \qquad \Longrightarrow \qquad \lambda = 1, 3.
$$

But only $\lambda = 1$ satisfies the original equation in λ .

8. Suppose that we are given the point $P(0, 1, 2)$, the plane

$$
\Pi: y + 2z - 1 = 0,
$$

and the line

$$
\ell : x = 1 - t, \quad y = -2, \quad z = 2 - 3t, \quad t \text{ in } \mathcal{R}.
$$

(a) Find all points of intersection of line ℓ and plane Π , or show that such points do not exist.

(b) Find an equation of the plane Π_1 which contains the line ℓ and passes through the point P.

(a) When we substitute the parametric equations of the line into the equation of the plane,

$$
-2 + 2(2 - 3t) - 1 = 0
$$
 \implies $-6t + 1 = 0$ \implies $t = 1/6$.

Hence the point of intersection is $(5/6, -2, 3/2)$.

(b) A vector along the line is $\langle -1, 0, -3 \rangle$. Since $Q(1, -2, 2)$ is a point on the line, the vector $\mathbf{PQ} = \langle 1, -3, 0 \rangle$ is in Π_1 . Hence, a vector perpendicular to the plane is

$$
\begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ -1 & 0 & -3 \\ 1 & -3 & 0 \end{vmatrix} = \langle -9, -3, 3 \rangle,
$$

as is $\langle 3, 1, -1 \rangle$. The equation for Π_1 is therefore $3(x) + 1(y - 1) - (z - 2) = 0$, or, $3x + y - z = -1$.