1210 Midterm 2024

1. Use the principle of mathematical induction to show that for $n \ge 1$

$$1 \cdot 3 + 2 \cdot 4 + \dots + n(n+2) = \frac{n(n+1)(2n+7)}{6}.$$

When n = 1: L.S.= $1 \cdot 3 = 3$ Hence, the result is valid for n = 1. Assume that the result is valid for some integer $k \ge 1$; that is,

$$1 \cdot 3 + 2 \cdot 4 + \dots + k(k+2) = \frac{k(k+1)(2k+7)}{6}.$$

We must now prove that the result is valid for k + 1; that is, we must prove that

$$1 \cdot 3 + 2 \cdot 4 + \dots + (k+1)(k+3) = \frac{(k+1)(k+2)(2k+9)}{6}$$

The left side is equal to

$$[1 \cdot 3 + 2 \cdot 4 + \dots + k(k+2)] + (k+1)(k+3) = \frac{k(k+1)(2k+7)}{6} + (k+1)(k+3)$$
$$= \left(\frac{k+1}{6}\right) [k(2k+7) + 6(k+3)]$$
$$= \frac{(k+1)(2k+7)(2k+7)}{6} + \frac{k(k+1)(2k+7)(2k+7)}{6} + \frac{k(k+1)(2k+7)(2k+7)}{6} + \frac{k(k+1)(2k+7)(2k+7)}{6} + \frac{k(k+1)(2k+7)(2k+7)(2k+7)}{6} + \frac{k(k+1)(2k+7)(2k+7)}{6} + \frac{k(k+1)(2k+7)}{6} + \frac{k(k+1$$

Since this is the right side of what we have to prove, the result is valid for k + 1, and by the principle of mathematical induction, the result is valid for all $n \ge 1$.

2. Let $S_n = 1 \cdot 3 + 2 \cdot 4 + \cdots + n(n+2)$. Write S_n in sigma notation.

In sigma notation,

$$1 \cdot 3 + 2 \cdot 4 + \dots + n(n+2) = \sum_{k=1}^{n} k(k+2).$$

3. Compute
$$\frac{4-3i}{2+i} + \overline{3+4i} \cdot (2i)$$
.
 $\frac{4-3i}{2+i} + \overline{3+4i} \cdot (2i) = \frac{4-3i}{2+i} \cdot \frac{2-i}{2-i} + (3-4i)(2i) = \frac{5-10i}{5} + 8 + 6i = 9 + 4i$

4. Compute $(\sqrt{3}-i)^{14}$. Write your answer in polar form using the principal value of the argument.

Since
$$\sqrt{3} - i = 2e^{-\pi i/6}$$
,
 $(\sqrt{3} - i)^{14} = 2^{14}e^{-14\pi i/6} = 2^{14}e^{-7\pi i/3} = 2^{14}e^{-\pi i/3} = 2^{14}\left[\cos\left(-\pi/3\right) + i\sin\left(-\pi/3\right)\right]$.

- **5.** Let $P(x) = 8x^3 + 2x^2 + x + 3$.
 - (a) Using Descartes' rules of signs, determine the number of possible positive zeros and the number of negative zeros.
 - (b) Using the Bounds Theorem, determine the bound on the moduli of the zeros.
 - (c) It is given that P(-3/4) = 0. Find all zeros of P(x)

(a) Since P(x) has no sign changes, P(x) has no positive zeros. Since $P(-x) = -8x^3 + 2x^2 - x + 3$ has 3 sign changes, P(x) has either 3 or 1 negative zero.

- (b) According to the Bounds Theorem, $|x| < \frac{3}{8} + 1 = \frac{11}{8}$.
- (c) Since x = -3/4 is a zero, 4x + 3 must be a factor of P(x), and

$$P(x) = (4x+3)(2x^2 - x + 1).$$

The other two zeros are $x = \frac{1 \pm \sqrt{1-8}}{4} = \frac{1}{4} \pm \frac{\sqrt{7}}{4}i.$

6. Let $\mathbf{A} = \begin{pmatrix} 1 & -2 & -1 \\ 2 & 3 & 4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 3 & -5 \\ 1 & 2 \end{pmatrix}$, and $\mathbf{C} = \begin{pmatrix} 1 & -2 \\ 2 & 3 \\ 4 & 2 \end{pmatrix}$. Compute the following if they are defined. If they are not, explain why not. Be specific.

(a) $\mathbf{AC} - 3\mathbf{B}$ (b) $(\mathbf{CA})\mathbf{B}$ (c) $\mathbf{CA} + \mathbf{I}_3$

(a) $\mathbf{AC} - 3\mathbf{B} = \begin{pmatrix} -7 & -10\\ 24 & 13 \end{pmatrix} - 3\begin{pmatrix} 3 & -5\\ 1 & 2 \end{pmatrix} = \begin{pmatrix} -16 & 5\\ 21 & 7 \end{pmatrix}$ (b) \mathbf{CA} is a 3×3 matrix. Since \mathbf{B} is 2×2 , the product $(\mathbf{CA})\mathbf{B}$ is not defined. (c) $\mathbf{CA} + \mathbf{I}_3 = \begin{pmatrix} -3 & -8 & -9\\ 8 & 5 & 10\\ 8 & -2 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -2 & -8 & -9\\ 8 & 6 & 10\\ 8 & -2 & 5 \end{pmatrix}$ 7. For the points $P(\lambda, 2, -1)$, Q(2, 1, -1), and R(-1, 1, 2), where λ is a real number, either find all values of λ such $\angle PQR = \pi/3$ (60°), or show that such λ do not exist.

Vector $\mathbf{QP} = \langle \lambda - 2, 1, 0 \rangle$, and $\mathbf{QR} = \langle -3, 0, 3 \rangle$. Since

$$\mathbf{QP} \cdot \mathbf{QR} = |\mathbf{QP}| |\mathbf{QR}| \cos \angle PQR,$$

it follows that

$$-3(\lambda - 2) = \sqrt{(\lambda - 2)^2 + 1}\sqrt{18}\left(\frac{1}{2}\right) = \sqrt{(\lambda - 2)^2 + 1}\left(\frac{3}{\sqrt{2}}\right).$$

When we divide by 3, and square both sides of the equation,

$$2(\lambda - 2)^2 = (\lambda - 2)^2 + 1 \qquad \Longrightarrow \qquad (\lambda - 2)^2 = 1 \qquad \Longrightarrow \qquad \lambda = 1, 3.$$

But only $\lambda = 1$ satisfies the original equation in λ .

8. Suppose that we are given the point P(0,1,2), the plane

$$\Pi: y + 2z - 1 = 0,$$

and the line

$$\ell: x = 1 - t, \quad y = -2, \quad z = 2 - 3t, \quad t \text{ in } \mathcal{R}.$$

(a) Find all points of intersection of line ℓ and plane Π , or show that such points do not exist.

(b) Find an equation of the plane Π_1 which contains the line ℓ and passes through the point P.

(a) When we substitute the parametric equations of the line into the equation of the plane,

$$-2 + 2(2 - 3t) - 1 = 0 \implies -6t + 1 = 0 \implies t = 1/6.$$

Hence the point of intersection is (5/6, -2, 3/2).

(b) A vector along the line is $\langle -1, 0, -3 \rangle$. Since Q(1, -2, 2) is a point on the line, the vector $\mathbf{PQ} = \langle 1, -3, 0 \rangle$ is in Π_1 . Hence, a vector perpendicular to the plane is

$$\begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ -1 & 0 & -3 \\ 1 & -3 & 0 \end{vmatrix} = \langle -9, -3, 3 \rangle,$$

as is (3, 1, -1). The equation for Π_1 is therefore 3(x) + 1(y-1) - (z-2) = 0, or, 3x + y - z = -1.