Solutions to Assignment 1

1. (a) When $n=2$:
L.S. $=5+6+7=18$
R.S. $=2(3)(3)=18$

Thus, the result is valid for $n=2$.
(b)When $n=3$:
L.S. $=6+7+8+9+10=40 \quad$ R.S. $=2(4)(5)=40$

Thus, the result is also valid for $n=3$.
(c) When $n=1$:
L.S. $=4 \quad$ R.S $=2(2)(1)=4$.

Thus, the result is valid for $n=1$. Assume the result is valid for some integer k; that is,

$$
(k+3)+(k+4)+(k+5)+\cdots+(3 k+1)=2(k+1)(2 k-1) .
$$

We now want to prove that the result is valid for $k+1$; that is,

$$
(k+4)+(k+5)+(k+6)+\cdots+(3 k+4)=2(k+2)(2 k+1) .
$$

The left side can be rewritten in the form

$$
\begin{aligned}
\text { L.S. }= & {[(k+3)+(k+4)+(k+5)+\cdots+(3 k+1)] } \\
& \quad+(3 k+2)+(3 k+3)+(3 k+4)-(k+3) \\
= & 2(k+1)(2 k-1)+(3 k+2)+(3 k+3)+(3 k+4)-(k+3) \\
= & 2(k+1)(2 k-1)+(8 k+6) \\
= & 4 k^{2}+10 k+4 \\
= & 2(k+2)(2 k+1)=\text { R.S.. }
\end{aligned}
$$

This proves the result for $k+1$, and therefore, by mathematical induction, the result is valid for all $n \geq 1$.
2. (a) When $n=3,4^{n}+6 n-1$ becomes $4^{3}+6(3)-1=81$, which is divisible by 9 .

When $n=4,4^{n}+6 n-1$ becomes $4^{4}+6(4)-1=279$, which is divisible by 9 .
(b) When $n=1,4^{n}+6(n)-1$ becomes $4^{1}+6(1)-1=9$, which is divisible by 9 . Assume for some integer k that $4^{k}+6 k-1$ is divisible by 9 . Consider

$$
\begin{aligned}
4^{k+1}+6(k+1)-1 & =4\left(4^{k}\right)+6 k+5=4\left(4^{k}+6 k-1\right)+6 k+5-24 k+4 \\
& =4\left(4^{k}+6 k-1\right)-18 k+9=4\left(4^{k}+6 k-1\right)-9(2 k-1) .
\end{aligned}
$$

Since both terms on the right are divisible by 9 , it follows that $4^{k+1}+6(k+1)-1$ is divisible by 9 ; that is, the result is valid for $k+1$. Hence, by mathematical induction, $4^{n}+6 n-1$ is divisible by 9 for all $n \geq 1$.
3. Let us lower the limits of summation by 6 , compensating by raising m 's by 6 after the sigma sign,

$$
\begin{aligned}
S & =\sum_{m=1}^{17}(m+6-1)\left[(m+6)^{2}+5\right]=\sum_{m=1}^{17}(m+5)\left(m^{2}+12 m+41\right) \\
& =\sum_{m=1}^{17}\left(m^{3}+17 m^{2}+101 m+205\right) \\
& =\sum_{m=1}^{17} m^{3}+17 \sum_{m=1}^{17} m^{2}+101 \sum_{m=1}^{17} m+205 \sum_{n=1}^{17} 1 \\
& =\left(\frac{17 \cdot 18}{2}\right)^{2}+17\left(\frac{17 \cdot 18 \cdot 35}{6}\right)+101\left(\frac{17 \cdot 18}{2}\right)+205(17) \\
& =72692
\end{aligned}
$$

The sum of the digits is $7+2+6+9+2=26$.
4. (a)

$$
\begin{aligned}
w & =\frac{(1+i)^{3}}{3+2 i}+\frac{1}{1-i}=\frac{1+3 i-3-i}{3+2 i}+\frac{1}{1-i}=\frac{-2+2 i}{3+2 i}+\frac{1}{1-i} \\
& =\frac{(-2+2 i)(1-i)+(3+2 i)}{(3+2 i)(1-i)}=\frac{3+6 i}{5-i}=\frac{(3+6 i)(5+i)}{(5-i)(5+i)} \\
& =\frac{9+33 i}{26}=\frac{9}{26}+\frac{33}{26} i .
\end{aligned}
$$

(b) $|w|=\sqrt{\left(\frac{9}{26}\right)^{2}+\left(\frac{33}{26}\right)^{2}}=\frac{\sqrt{1170}}{26}=\frac{3 \sqrt{130}}{26}$.
5. We rewrite the equation in the form

$$
z^{5}=-\frac{1}{2}+\frac{\sqrt{3} i}{2}
$$

Since the modulus of the complex number on the right is $\sqrt{1 / 4+3 / 4}=1$, and an argument is $2 \pi / 3$, we can write that

$$
z^{5}=e^{2 \pi i / 3}=e^{(2 \pi / 3+2 k \pi) i},
$$

where k is an integer. When we take fifth roots,

$$
z=e^{(2 \pi / 3+2 k \pi) i / 5}=e^{(2 \pi / 15+2 k \pi / 5) i} .
$$

For $k=0,1,2,3,4$, we obtain the roots:

$$
\begin{aligned}
& z_{0}=e^{2 \pi i / 15}, \\
& z_{1}=e^{8 \pi i / 15}, \\
& z_{2}=e^{14 \pi i / 15}, \\
& z_{3}=e^{20 \pi i / 15}=e^{-2 \pi i / 3}, \\
& z_{4}=e^{26 \pi i / 15}=e^{-4 \pi i / 15} .
\end{aligned}
$$

6. If we set $z=x+y i$, the equations become

$$
|x+y i+1+3 i|=\sqrt{34}, \quad(1-3 i)(x+y i)+(1+3 i)(x-y i)=4 .
$$

The second equation gives
$(x-3 x i+y i+3 y)+(x+3 x i-y i+3 y)=4 \quad \Longrightarrow \quad 2 x+6 y=4 \quad \Longrightarrow \quad x=2-3 y$.
If we square the first equation, and substitute $x=2-3 y$,

$$
\begin{aligned}
34 & =|(x+1)+(y+3) i|^{2}=\mid\left((2-3 y+1)+\left.(y+3) i\right|^{2}\right. \\
& =(3-3 y)^{2}+(y+3)^{2}=10 y^{2}-12 y+18 .
\end{aligned}
$$

Thus,

$$
0=10 y^{2}-12 y-16=2(y-2)(5 y+4)
$$

solutions of which are $y=2$ and $y=-4 / 5$. Corresponding values for x are -4 and $22 / 5$. The complex numbers are

$$
-4+2 i, \quad \frac{22}{5}-\frac{4 i}{5} .
$$

