Midterm Solutions for Math 1210 Fall 2019

1. Use mathematical induction to prove the equality

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1} .
$$

When $n=1$:

$$
\text { L.S. }=\frac{1}{1 \cdot 2}=\frac{1}{2} \quad \text { R.S. }=\frac{1}{2}
$$

The result is therefore valid for $n=1$. Suppose the result is valid for some integer k; that is,

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{k(k+1)}=\frac{k}{k+1} .
$$

We must now show that the result is valid for $k+1$; that is,

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{(k+1)(k+2)}=\frac{k+1}{k+2} .
$$

The left side is equal to

$$
\begin{aligned}
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{(k+1)(k+2)} & =\left[\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{k(k+1)}\right]+\frac{1}{(k+1)(k+2)} \\
& =\frac{k}{k+1}+\frac{1}{(k+1)(k+2)}=\frac{1}{k+1}\left(k+\frac{1}{k+2}\right) \\
& =\frac{1}{k+1}\left(\frac{k^{2}+2 k+1}{k+2}\right)=\frac{1}{k+1}\left[\frac{(k+1)^{2}}{k+2}\right]=\frac{k+1}{k+2} .
\end{aligned}
$$

Thus the result is valid for $k+1$, and by mathematical induction, it is valid for all $n \geq 1$.
2. Write the sum

$$
\frac{3}{2^{7}}-\frac{4}{2^{8}}+\frac{5}{2^{9}}-\frac{6}{2^{10}}+\cdots+\frac{11}{2^{15}}
$$

ine Σ-notation. Your index of summation should start from 1 .

The sum can be expressed in the form

$$
\sum_{k=1}^{9}(-1)^{k+1} \frac{k+2}{2^{k+6}}
$$

3. Convert the complex number

$$
\frac{\overline{1+i}}{\left(\sqrt{2}+e^{\frac{3 \pi i}{4}}\right)^{6}}
$$

into Cartesian form.
The denominator is

$$
\begin{aligned}
\left(\sqrt{2}+e^{\frac{3 \pi i}{4}}\right)^{6} & =\left(\sqrt{2}+\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)^{6}=\left(\sqrt{2}-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{6} \\
& =\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{6}=\left(e^{\pi i / 4}\right)^{6}=e^{3 \pi i / 2}=\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}=-i
\end{aligned}
$$

Thus,

$$
\frac{\overline{1+i}}{\left(\sqrt{2}+e^{\frac{3 \pi i}{4}}\right)^{6}}=\frac{1-i}{-i}=1+i .
$$

6 4. Consider the polynomial

$$
f(x)=x^{3}+a x^{2}+b x+c,
$$

where a, b, and c are real numbers. It is given that $3-i$ and 2 are roots (=zeros) of $f(x)$. Find the values of a, b, and c.

Since the polynomial has real coefficients, $3+i$ is also a zero. Hence $x-(3+i)$ and $x-(3-i)$ are factors of $f(x)$. When we multiply these together,

$$
(x-3-i)(x-3+i)=x^{2}-6 x+10 .
$$

It now follows that

$$
f(x)=x^{3}+a x^{2}+b x+c=(x-2)\left(x^{2}-6 x+10\right)=x^{3}-8 x^{2}+22 x-20 .
$$

Thus, $a=-8, b=22$, and $c=-20$.
5. Consider the matrix $A=\left[\begin{array}{ll}3 & -1 \\ 2 & -5\end{array}\right]$, and let I_{2} denote the 2×2 identity matrix. Now find the matrix

$$
\begin{gathered}
A^{2}+2 A-13 I_{2} . \\
A^{2}+2 A-13 I_{2}
\end{gathered}=\left[\begin{array}{cc}
3 & -1 \\
2 & -5
\end{array}\right]\left[\begin{array}{ll}
3 & -1 \\
2 & -5
\end{array}\right]+2\left[\begin{array}{ll}
3 & -1 \\
2 & -5
\end{array}\right]-13\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

6. Let I_{n} denote the $n \times n$ identity matrix. Let A and B be matrices such that the expression

$$
B^{T} I_{3} A-5 I_{4}
$$

is defined. Find the sizes of A and B.

Since $-5 I_{4}$ is 4×4, so also must be $B^{T} I_{3} A$. For $B^{T} I_{3}$ to be defined, B^{T} must have 3 columns. We now know that B^{T} is 4×3, and therefore B is 3×4. For $I_{3} A$ to be defined, A must have 3 rows, and therefore A is 3×4.
7. Consider the vectors

$$
\mathbf{u}=\langle 4, a, 7\rangle \quad \text { and } \quad \mathbf{v}=\langle a, a-1,-4\rangle .
$$

in \mathcal{R}^{3}. It is given to you that \mathbf{u} and \mathbf{v} are perpendicular (i.e., orthogonal). Find all possible values of a.

Since \mathbf{u} and \mathbf{v} are perpendicular,

$$
0=\mathbf{u} \cdot \mathbf{v}=4 a+a(a-1)-28=a^{2}+3 a-28=(a+7)(a-4)
$$

Thus, $a=-7$ or $a=4$.
8. Consider the lines

$$
L_{1}: \quad x=2-t, \quad y=3+t, \quad z=-4-6 t,
$$

and

$$
L_{2}: \quad x=s, \quad y=2-s, \quad z=3+6 s,
$$

in \mathcal{R}^{3}.
(a) Show that L_{1} and L_{2} are parallel. (That is to say, give a complete mathematical reasoning.)
(b) Now find the equation of the unique plane which contains both L_{1} and L_{2}.
(a) Vectors along L_{1} and L_{2} are $\langle-1,1,-6\rangle$ and $\langle 1,-1,6\rangle$, respectively. Since they are multiples of each other, the vectors are parallel, and therefore the lines are either parallel, or they are the same line. Since the point $(2,3,-4)$ on L_{1} is not on L_{2}, the lines are different.
(b) Since $(0,2,3)$ is a point on L_{2}, and $(2,3,-4)$ is a point on L_{1}, a vector in the required plane is $\langle 2,3,-4\rangle-\langle 0,2,3\rangle=\langle 2,1,-7\rangle$. A vector normal to the plane is

$$
\langle 1,-1,6\rangle \times\langle 2,1,-7\rangle=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & -1 & 6 \\
2 & 1 & -7
\end{array}\right|=\langle 1,19,3\rangle .
$$

The equation of the plane is

$$
1(x)+19(y-2)+3(z-3)=0 \quad \Longrightarrow \quad x+19 y+3 z=47 .
$$

