Math 1210 Tutorial 8

Use Gauss-Jordan elimination to find all solutions for each of the following systems of equations:
1.

$$
\begin{aligned}
2 x+3 y-4 z+w & =16, \\
y+2 z-3 w & =-12, \\
3 x-y+2 w & =9 \\
2 x+y+z & =3 .
\end{aligned}
$$

2.

$$
\begin{aligned}
2 x+3 y-4 z+w & =3 \\
x-2 y+z & =6 \\
3 x+y+w & =4 \\
6 x+2 y-3 z+2 w & =13
\end{aligned}
$$

3. Find basic solutions, which consist of integers only, for the following system of homogeneous equations

$$
\begin{aligned}
& x+5 y+3 z-5 w=0 \\
& 2 x-y+3 z-4 w=0
\end{aligned}
$$

Are they unique?
4. (a) Show that solutions of the system of nonhomogeneous equations

$$
\begin{aligned}
2 x-y+3 z+5 w & =3, \\
x+3 y-2 z+w & =-2, \\
3 x+2 y+z+6 w & =1,
\end{aligned}
$$

can be expressed in the form

$$
\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=z\left(\begin{array}{c}
-1 \\
1 \\
1 \\
0
\end{array}\right)+\frac{w}{7}\left(\begin{array}{c}
-16 \\
3 \\
0 \\
7
\end{array}\right)+\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right)
$$

(b) Are $\left(\begin{array}{c}x \\ y \\ z \\ w\end{array}\right)=\left(\begin{array}{c}-1 \\ 1 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}x \\ y \\ z \\ w\end{array}\right)=\left(\begin{array}{c}-16 \\ 3 \\ 0 \\ 7\end{array}\right)$ basic solutions of the system? Are they even solutions of the system?
(c) Is $\left(\begin{array}{c}x \\ y \\ z \\ w\end{array}\right)=\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right)$ a solution of the system? Is it a basic solution?

Answers:

1. $x=1, y=2, z=-1, w=4$
2. $x=\frac{47}{21}-\frac{2 t}{7}, \quad y=-\frac{19}{7}-\frac{t}{7}, \quad z=-\frac{5}{3}, \quad w=t$
3. $\left(\begin{array}{c}-18 \\ -3 \\ 11 \\ 0\end{array}\right),\left(\begin{array}{c}25 \\ 6 \\ 0 \\ 11\end{array}\right) \quad$ No
4. (a) No, No (b) Yes, No
