
Alternating Series

A series of constants

∞
∑

n=1

cn is said to be alternating if its terms are alternately positive

and negative. For example, the series

∞
∑

n=1

(−1)n+1

n
= 1 − 1

2
+

1

3
− 1

4
+ · · ·

is called the alternating harmonic series. We know that the harmonic series which has
all positive terms diverges. The partial cancelling effect of the negative terms creates a
convergent series. We can prove this with the following theorem.

Theorem 1 (Alternating Series Test) An alternating series
∑

∞

n=1
cn converges if the sequence of

absolute values of the terms {|cn|} is decreasing and has limit zero.

The alternating harmonic series satisfies the conditions of this theorem, the sequence {1/n}
is decreasing and has limit zero. Hence, the alternating harmonic series converges. Although
it is not obvious, the sum of the series is ln 2.

Example 1 Determine whether the following alternating series converge or diverge,

(a)

∞
∑

n=3

(−1)nn

2n2 + 3
(b)

∞
∑

n=1

(−1)n+1 n + 1

5n + 2

Solution (a) Since the sequence

{

n

2n2 + 3

}

is decreasing and has limit zero, the alter-

nating series test implies that the series converges.

(b) The sequence

{

n + 1

5n + 2

}

is decreasing, but it has limit 1/5, not zero. We cannot con-

clude by the alternating series test that the series diverges. However, we can say that

lim
n→∞

{

(−1)n+1 n + 1

5n + 2

}

does not exist. Hence the series diverges by the nth-term test.•

Example 2 Find the interval of convergence of the power series

∞
∑

n=1

2n

n + 1
xn.

Solution The radius of convergence of the series is

R = lim
n→∞
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The open interval of convergence of the series is therefore −1/2 < x < 1/2. At x = 1/2, the
power series becomes

∞
∑

n=1

1

n + 1
=

1

2
+

1

3
+ · · · ,

the harmonic series, missing the first term. The series diverges. At x = −1/2, the power
series becomes

∞
∑

n=1

(−1)n

n + 1
= −1

2
+

1

3
− · · · ,

the alternating harmonic series, less the first term. The series therefore converges. The
interval of convergence of the power series is therefore −1/2 ≤ x < 1/2.•
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We have a formula for the sum of geometric series. Sums for other convergent series
of constants can sometimes be found, especially if they relate to the exponential, sine, and
cosine functions. The technique for finding sums of certain power series in Section 10.6 also
lead to sums of convergent series of numbers. These techniques certainly do not find sums
for all convergent series of numbers. In fact, there are many series of numbers for which
we would find it impossible to find a sum. But in applications we might be satisfied with a
reasonable approximation to the sum of such a series, and we therefore turn our attention
to the problem of estimating the sum of a convergent series of numbers. The easiest method
for estimating the sum S of a convergent series

∑

∞

n=1
cn is simply to choose the partial sum

SN for some N as an approximation; that is, truncate the series after N terms and choose

S ≈ SN = c1 + c2 + · · ·+ cN .

But an approximation is of value only if we can make some definitive statement about its
accuracy. In truncating the series, we have neglected the infinity of terms

∑

∞

n=N+1
cn, and

the accuracy of the approximation is therefore determined by the size of
∑

∞

n=N+1
cn; the

smaller it is, the better the approximation. The problem is that we do not know the exact
value of

∑

∞

n=N+1
cn; if we did, there would be no need to approximate the sum of the

original series in the first place. What we must do is estimate the sum
∑

∞

n=N+1
cn.

It is very simple to obtain the truncation error, an estimate of the accuracy of a
truncated alternating series

∑

cn provided the sequence {|cn|} is decreasing with limit zero.
For example, suppose c1 > 0 (a similar discussion can be made when c1 < 0). If {Sn} is the
sequence of partial sums of

∑

cn, then even partial sums can be expressed in the form

S2n = (c1 + c2) + (c3 + c4) + · · ·+ (c2n−1 + c2n).

Since {|cn|} is decreasing (|cn| > |cn+1|), each term in the parentheses is positive. Conse-
quently, the subsequence {S2n} of even partial sums of {Sn} is increasing and approaches
the sum of the series

∑

cn from below (see figure). In a similar way, we can show that the
subsequence {S2n−1} of odd partial sums is decreasing and approaches the sum of the series
from above. It follows that the sum

∑

cn must be between any two terms of the subse-
quences {S2n} and {S2n−1}. In particular, the sum of the alternating series must be between

any two successive partial sums. Furthermore, when the alternating series is truncated, the

maximum possible error is the next term.

Example 3 Find a three-decimal approximation for the sum of the series
∞
∑

n=1

(−1)n+1

n6
.

Solution Since the series is alternating, and absolute values of terms are decreasing with
limit zero, we can say that the sum of the series lies between any two successive partial
sums. We therefore calculate partial sums of the series until two successive partial sums
agree to three decimals.

S1 = 1, S2 = 0.984375, S3 = 0.985747, S4 = 0.985503.

Since S3 and S4 both round to 0.986, this is a three decimal approximation to the sum of
the series.•
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In practical situations, we often have to decide how many terms of a series to take in
order to guarantee a certain degree of accuracy. Once again this is easy for alternating series
whose terms satisfy the conditions of the alternating series test.

Example 4 How many terms in the series
∑

∞

n=2
(−1)n+1/(n3 lnn) ensure a truncation error of less than

10−5?

Solution Because absolute values of terms are decreasing and have limit zero, the maxi-
mum error in truncating this alternating series when n = N is

(−1)N+2

(N + 1)3 ln (N + 1)
.

The absolute value of this error is less than 10−5 when

1

(N + 1)3 ln (N + 1)
< 10−5 or

(N + 1)3 ln (N + 1) > 105.

A calculator quickly reveals that the smallest integer for which this is valid is N = 30. Thus,
the truncated series has the required accuracy after the 29th term (the first term corresponds
to n = 2 not n = 1).•

Exercises

In Exercises 1–12 determine whether the series converges or diverges.

1.

∞
∑

n=1

(−1)n
n

n3 + 1
2.

∞
∑

n=1

(−1)n
n

n2 + 1

3.

∞
∑

n=1

(−1)n
n

n + 1
4.

∞
∑

n=1

(−1)n
n3

3n

5.

∞
∑

n=1

(−1)n+1

√
n

6.

∞
∑

n=1

(−1)n
3n

n3

7.

∞
∑

n=1

(−1)n
n

n2 + n + 1
8.

∞
∑

n=1

(−1)n+1

√
3n − 2

n

∗9.

∞
∑

n=1

(−1)n

(

n

n + 1

)n

∗10.

∞
∑

n=1

(−1)n

√
n2 + 3

n2 + 5

∗11.

∞
∑

n=2

(−1)n−1 lnn

n
∗12.

∞
∑

n=1

(−1)n+1Tan−1n

n3 + 5n

In Exercises 13–16 find the interval of convergence of the power series.

∗13.

∞
∑

n=1

1

n
xn ∗14.

∞
∑

n=1

1

n2n
(x − 1)n

∗15.

∞
∑

n=0

(−1)n(n − 1)

n2 + 1
(2x)2n ∗16.

∞
∑

n=0

(−1)n+1
√

n + 1x3n+1

In Exercises 17–18 use the number of terms indicated to find an approximation to the sum of the series. In
each case, obtain an estimate of the truncation error.

17.

∞
∑

n=2

(−1)n+1

n33n
(3 terms) 18.

∞
∑

n=1

(−1)n

n4
(20 terms)

In Exercises 19–20 find an approximation to the sum accurate to five decimals.
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19.

∞
∑

n=2

(−1)n+1

n33n
20.

∞
∑

n=1

(−1)n

n4

In Exercises 21–22 find the number of terms of the series that should be summed so that the error is less than
10−6.

21.

∞
∑

n=2

(−1)n+1

n33n
22.

∞
∑

n=1

(−1)n

n4

Answers

1. Converges 2. Converges 3. Diverges 4. Converges 5. Converges 6. Diverges
7. Converges 8. Converges 9. Diverges 10. Converges 11. Converges 12. Converges
13. −1 ≤ x < 1 14. −1 ≤ x < 3 15. −1/2 ≤ x ≤ 1/2 16. −1 < x < 1
17. −0.012710, 1/(53 · 35) 18. −0.947030, 1/214 19. −0.01268 20. −0.94703
21. 6 22. 31
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