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CHAPTER 10

EXERCISES 10.1

1. This sequence has limit 0. 2. This sequence diverges.
3. This sequence has limit 3. 4. This sequence has limit 0.
5. This sequence diverges. 6. This sequence has limit 0.
7. This sequence diverges.

8. This sequence has limit lim
n→∞

n

n2 + n + 2
= lim

n→∞

1
n + 1 + 2/n

= 0.

9. This sequence has limit 0. 10. This sequence has limit π/2.
11. This sequence has limit 0. 12. This sequence diverges.
13. This sequence has limit 2 (since all terms are equal to 2).
14. This sequence has limit 0.

15. This sequence has limit lim
n→∞

n + 1
2n + 3

= lim
n→∞

1 + 1/n

2 + 3/n
=

1
2
.

16. This sequence has limit lim
n→∞

2n + 3
n2 − 5

= lim
n→∞

2 + 3/n

n − 5/n
= 0.

17. This sequence has limit lim
n→∞

n2 + 5n − 4
n2 + 2n − 2

= lim
n→∞

1 + 5/n− 4/n2

1 + 2/n− 2/n2
= 1.

18. This sequence has limit 0. 19. This sequence has limit 0.

20. This sequence has limit lim
n→∞

1
1 + 1/n

Tan−1n =
π

2
.

21. The general term is
2n − 1

2n
. 22. The general term is

3n + 1
n2

.

23. The general term is (−1)n+1 ln (n + 1)√
n + 1

. 24. The general term is
1 + (−1)n+1

2
.

25. The general term is
√

2 sin
(2n − 1)π

4
.

26. The limit of the sequence {ln n/
√

n} as n → ∞ is equal to the limit of the function ln x/
√

x as x → ∞,
provided the limit of the function exists. When we use L’Hôpital’s rule on the limit of the function,

lim
n→∞

ln n√
n

= lim
x→∞

ln x√
x

= lim
x→∞

1/x

1/(2
√

x)
= lim

x→∞

2√
x

= 0.

27. The limit of the sequence {(n3 + 1)/en} as n → ∞ is equal to the limit of the function (x3 + 1)/ex

as x → ∞, provided the limit of the function exists. When we use L’Hôpital’s rule on the limit of the
function,

lim
n→∞

n3 + 1
en

= lim
x→∞

x3 + 1
ex

= lim
x→∞

3x2

ex
= lim

x→∞

6x

ex
= lim

x→∞

6
ex

= 0.

28. The limit of the sequence {n sin (4/n)} as n → ∞ is equal to the limit of the function x sin (4/x) as
x → ∞, provided the limit of the function exists. When we use L’Hôpital’s rule,

lim
n→∞

n sin
(

4
n

)
= lim

x→∞
x sin

(
4
x

)
= lim

x→∞

sin (4/x)
1/x

= lim
x→∞

−(4/x2) cos (4/x)
−1/x2

= 4.



EXERCISES 10.1 559

29. The limit of the sequence {[(n+5)/(n+3)]n} as n → ∞ is equal to the limit of the function [(x+5)/(x+
3)]x as x → ∞, provided the limit of the function exists. We set L equal to the limit of the function,
take logarithms, and use L’Hôpital’s rule,

ln L = ln
[

lim
x→∞

(
x + 5
x + 3

)x]
= lim

x→∞
x ln

(
x + 5
x + 3

)
= lim

x→∞

ln
(

x + 5
x + 3

)

1/x

= lim
x→∞

x + 3
x + 5

[
(x + 3) − (x + 5)

(x + 3)2

]

−1/x2
= lim

x→∞

2x2

(x + 3)(x + 5)
= 2.

Thus, L = e2, and this is also the limit of the sequence.
30. Certainly the sequence diverges; terms get arbitrarily large for large n. On the other hand, as n increases,

the difference between terms approaches lim
n→∞

[ln n − ln (n + 1)] = lim
n→∞

ln
(

n

n + 1

)
= 0.

31. (a) The first ten terms are 2,3,5,7,11,13,17,19,23,29. (b) No one has developed a formula for all primes.
32. The figure indicates that with initial

approximation x1 = 1, the sequence defined
by Newton’s iterative procedure has a limit
near −1/2. Iteration of

x1 = 1, xn+1 = xn − x2
n + 3xn + 1
2xn + 3

leads to
x2 = 0, x3 = −1/3,

x4 = −0.381, x5 = −0.381 966,

x6 = −0.381 966 01, x7 = −0.381 966 01.
Since f(−0.381 965 95) = 1.4× 10−7 and
f(−0.381 966 05) = −8.7× 10−8, we can

y

x

6

3

-1 1

x

xx
1

23

say that to seven decimals x = −0.381 966 0.
33. The figure indicates that with initial

approximation x1 = −1, the sequence defined
by Newton’s iterative procedure has a limit
near −1/2. Iteration of

x1 = −1, xn+1 = xn − x2
n + 3xn + 1
2xn + 3

leads to
x2 = 0, x3 = −1/3,

x4 = −0.381, x5 = −0.381 966,

x6 = −0.381 966 01, x7 = −0.381 966 01.

Since f(−0.381 965 95) = 1.4× 10−7 and
f(−0.381 966 05) = −8.7× 10−8, we can

y

x

6

3

-1 1

x

xx 23

1

say that to seven decimals x = −0.381 966 0.
34. The figure indicates that with initial

approximation x1 = −1.5, the sequence defined
by Newton’s iterative procedure does not have
a limit. This is because x1 = −1.5 is a
critical point of the function.

y

x

3

-1 1

x1
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35. The figure indicates that with initial approximation x1 = −3, the sequence defined by Newton’s iterative
procedure has a limit near −3. Iteration of

x1 = −3, xn+1 = xn − x2
n + 3xn + 1
2xn + 3

leads to
x2 = −2.667, x3 = −2.6191,

x4 = −2.618 034 5, x5 = −2.618 033 99,

x6 = −2.618 033 99.

Since f(−2.618 034 05) = 1.4× 10−7 and
f(−2.618 033 95) = −8.7× 10−8, we can
say that to seven decimals x = −2.618 034 0.

y

x

2

1

-3 -1-2

x

x

1

2

36. The figure indicates that with initial approximation x1 = 4, the sequence defined by Newton’s iterative
procedure has a limit near 3. Iteration of

x1 = 4, xn+1 = xn − x3
n − x2

n + xn − 22
3x2

n − 2xn + 1
leads to

x2 = 3.268, x3 = 3.060 9,

x4 = 3.044 8, x5 = 3.044 723 15,

x6 = 3.044 723 15.

Since f(3.044 723 05) = −2.2× 10−6 and
f(3.044 723 15) = 3.5 × 10−8, we can say
that to seven decimals x = 3.044 723 1.

y

x

20

-20

2 4

x

xx

1

23

37. The figure indicates that with initial approximation x1 = 2, the sequence defined by Newton’s iterative
procedure has a limit near 3. Iteration of

x1 = 2, xn+1 = xn − x3
n − x2

n + xn − 22
3x2

n − 2xn + 1
leads to

x2 = 3.778, x3 = 3.187,

x4 = 3.0515, x5 = 3.044 740,

x6 = 3.044 723 15, x7 = 3.044 723 15.

Since f(3.044 723 05) = −2.2× 10−6 and
f(3.044 723 15) = 3.5 × 10−8, we can say
that to seven decimals x = 3.044 723 1.

y

x

20

-20

2 4

x

x
x

1

2

3x4

38. The figure indicates that with initial aproximation x1 = 2, the sequence defined by Newton’s iterative
procedure has a limit near 1. Iteration of

x1 = 2, xn+1 = xn −
x5

n − 3xn + 1
5x4

n − 3
gives

x2 = 1.649, x3 = 1.406,

x4 = 1.268, x5 = 1.220,

x6 = 1.215, x7 = 1.214 65,

x8 = 1.214 648 04, x9 = 1.214 648 04.

Since f(1.214 647 95) = −7.3× 10−7 and
f(1.214 648 05) = 5.8 × 10−8, we can say
that to seven decimals x = 1.214 648 0.

y

x

20

10

1 2xxx

x

234

1
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39. The figure indicates that the sequence defined by Newton’s iterative procedure has a limit. Iteration of

x1 = 1, xn+1 = xn − x5
n − 3xn + 1
5x4

n − 3
gives

x2 = 1.5, x3 = 1.317,

x4 = 1.233, x5 = 1.2154,

x6 = 1.214 649, x7 = 1.214 648 04,

x8 = 1.214 648 04.

Since f(1.214 647 95) = −7.3× 10−7 and
f(1.214 648 05) = 5.8 × 10−8, we can say
that to seven decimals x = 1.214 648 0.

y

x

20

10

1 2xx

x

23

1

40. The figure indicates that with initial approximation x1 = 0, the sequence defined by Newton’s iterative
procedure has a limit near 0.3. Iteration of

x1 = 0, xn+1 = xn − x5
n − 3xn + 1
5x4

n − 3
gives

x2 = 1/3, x3 = 0.334 7,

x4 = 0.334 734 14, x5 = 0.334 734 14.

Since f(0.334 734 05) = 2.7× 10−7 and
f(0.334 734 15) = −2.4× 10−8, we can
say that to seven decimals x = 0.334 734 1.

y

x

1

1/2x x1 2

41. The figure indicates that with initial approximation x1 = 4/5, the sequence defined by Newton’s iterative
procedure has a limit near 0.3. Iteration of

x1 = 4/5, xn+1 = xn − x5
n − 3xn + 1
5x4

n − 3
gives

x2 = −0.326, x3 = 0.345,

x4 = 0.334 72, x5 = 0.334 734 14,

x6 = 0.334 734 14.

Since f(0.334 734 05) = 2.7× 10−7 and
f(0.334 734 15) = −2.4× 10−8, we can
say that to seven decimals x = 0.334 734 1.

y

x

2

1xx

x

12

3

42. The figure indicates that with initial approximation x1 = 0.85, the sequence defined by Newton’s iterative
procedure has a limit near −1.5. Iteration of

x1 = 0.85, xn+1 = xn −
x5

n − 3xn + 1
5x4

n − 3
gives

x2 = −1.987, x3 = −1.667,

x4 = −1.474, x5 = −1.399,

x6 = −1.389, x7 = −1.388 792 06,

x8 = −1.388 791 98, x9 = −1.388 791 98.

Since f(−1.388 791 95) = 5.4× 10−7 and
f(−1.388 792 05) = −1.0× 10−6, we can
say that to seven decimals x = −1.388 792 0.

y

x-2 -1

1

-10

-20

xx 3 12 x x4
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43. The figure indicates that with initial approximation x1 = −2, the sequence defined by Newton’s iterative
procedure has a limit near −1.5. Iteration of

x1 = −2, xn+1 = xn − x5
n − 3xn + 1
5x4

n − 3
gives

x2 = −1.675, x3 = −1.478,

x4 = −1.4004, x5 = −1.3890,

x6 = −1.388 792, x7 = −1.388 791 98,

x8 = −1.388 791 98.

Since f(−1.388 791 95) = 5.4× 10−7 and
f(−1.388 792 05) = −1.0× 10−6, we can
say that to seven decimals x = −1.388 792 0.

y

x-2 -1

1

-10

-20

x x x31 2

44. Iteration of x1 = 2, xn+1 = 2 +
1
xn

gives

x2 = 2.5, x3 = 2.4, x4 = 2.416 67, x5 = 2.413 79, x6 = 2.414 29,

x7 = 2.414 20, x8 = 2.414 22, x9 = 2.414 21, x10 = 2.414 21.

Since f(2.414 15) = −1.8× 10−4 and f(2.414 25) = 1.0× 10−4, it follows that to 4 decimals, x = 2.4142.

45. Iteration of x1 = −1, xn+1 = −1
6
(x3

n + 3) gives

x2 = −1/3, x3 = −0.4938, x4 = −0.4799, x5 = −0.4816, x6 = −0.481 38, x7 = −0.481 41.

Since f(−0.481 35) = 3.7 × 10−4 and f(−0.481 45) = −3.0 × 10−4, it follows that to 4 decimals, x =
−0.4814.

46. Iteration of x1 = 0, xn+1 =
1

120
(x4

n + 20) gives

x2 = 1/6, x3 = 0.166 67, x4 = 0.166 67.

Since f(0.166 65) = 2.8× 10−3 and f(0.166 75) = −9.2× 10−3, it follows that to 4 decimals, x = 0.1667.

47. Iteration of x1 = 3, xn+1 =
2x2

n + 3xn − 1
x2

n

gives

x2 = 2.889, x3 = 2.9186, x4 = 2.910 49, x5 = 2.912 70,

x6 = 2.912 10, x7 = 2.912 26, x8 = 2.912 22.

Since f(2.912 15) = −8.5×10−4 and f(2.912 25) = 2.2×10−4, the root is x = 2.9122 to 4 decimal places.

48. Iteration of x1 = 0, xn+1 =
1
2
(1 + x2

n)1/3 gives

x2 = 1/2, x3 = 0.5386, x4 = 0.5443, x5 = 0.545 17,

x6 = 0.545 31, x7 = 0.545 33, x8 = 0.545 33.

Since f(0.545 25) = −4.9× 10−4 and f(0.545 35) = 1.2× 10−4, it follows that to 4 decimals, x = 0.5453.

49. With x1 = 3.5, and xn+1 =
6x2

n − 11xn + 7
x2

n

, iteration gives

x2 = 3.4286, x3 = 3.3872, x4 = 3.3626, x5 = 3.3478, x6 = 3.3388,

x7 = 3.333 34, x8 = 3.330 00, x9 = 3.327 96, x10 = 3.326 71, x11 = 3.325 94,

x12 = 3.325 47, x13 = 3.325 18, x14 = 3.325 00, x15 = 3.324 89, x16 = 3.324 82,

x17 = 3.324 78, x18 = 3.324 76, x19 = 3.324 74.

With f(x) = x3−6x2+11x−7, we calculate that f(3.324 65) = −2.9×10−4 and f(3.324 75) = 1.4×10−4.
The root is therefore x = 3.3247 to 4 decimals.
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50. With x1 = 0, and xn+1 =
x4

n − 3x2
n + 1

3
, iteration gives

x2 = 1/3, x3 = 0.226, x4 = 0.283, x5 = 0.255, x6 = 0.270,

x7 = 0.262, x8 = 0.266, x9 = 0.2642, x10 = 0.2652, x11 = 0.2647,

x12 = 0.2649, x13 = 0.264 80, x14 = 0.264 85, x15 = 0.264 83, x16 = 0.264 84.

With f(x) = x4−3x2−3x+1, we calculate that f(0.264 75) = 3.9×10−4 and f(0.264 85) = −6.6×10−5.
The root is therefore x = 0.2648 to 4 decimals.

51. With x1 = 0.5 and xn+1 =
50 + 50x2

n − 4x3
n − x4

n

100
, iteration gives

x2 = 0.6194, x3 = 0.6809, x4 = 0.7170, x5 = 0.7397, x6 = 0.7544,

x7 = 0.7641, x8 = 0.7707, x9 = 0.7751, x10 = 0.7782, x11 = 0.7803,

x12 = 0.7817, x13 = 0.7827, x14 = 0.7834, x15 = 0.7839, x16 = 0.7842,

x17 = 0.7844, x18 = 0.7846, x19 = 0.7847, x20 = 0.7848, x21 = 0.784 83,

x22 = 0.784 85, x23 = 0.784 86.

With f(x) = x4 +4x3−50x2 +100x−50, we calculate that f(0.784 85) = −1.2×10−3 and f(0.784 95) =
1.9 × 10−3. Thus to 4 decimals, x = 0.7849.

52. With x1 = 0.75, and xn+1 =
√

1 − sin2 xn =
√

cos2 xn = cosxn, iteration gives
x2 = 0.732, x3 = 0.744, x4 = 0.736, x5 = 0.741, x6 = 0.738,

x7 = 0.740, x8 = 0.7385, x9 = 0.7395.

With f(x) = sin2 x− 1 + x2, we calculate that f(0.739 05) = −8.7× 10−5 and f(0.739 15) = 1.6× 10−4.
The root is therefore x = 0.7391 to 4 decimals.

53. By cross-multiplying, (1 + x4) sec x = 2, and therefore the equation can be rearranged into the form
x = (2 cosx − 1)1/4. With x1 = 0.5 and xn+1 = (2 cosxn − 1)1/4, iteration gives

x2 = 0.932, x3 = 0.662, x4 = 0.872, x5 = 0.732, x6 = 0.836,

x7 = 0.764, x8 = 0.816, x9 = 0.780, x10 = 0.806, x11 = 0.788,

x12 = 0.800, x13 = 0.792, x14 = 0.798, x15 = 0.793, x16 = 0.797,

x17 = 0.7941, x18 = 0.7962, x19 = 0.7947, x20 = 0.7958, x21 = 0.7950,

x22 = 0.7956, x23 = 0.7951, x24 = 0.7955, x25 = 0.7952, x26 = 0.7954,

x27 = 0.7953.

With f(x) = secx−2(1+x4)−1, we calculate that f(0.795 25) = −2.6×10−4 and f(0.795 35) = 9.2×10−5.
To 4 decimals then, x = 0.7953.

54. With x1 = 0.5, and xn+1 =
exn + e−xn

10
, iteration gives

x2 = 0.226, x3 = 0.205, x4 = 0.2042, x5 = 0.204 18, x6 = 0.204 18.

With f(x) = ex + e−x − 10x, we calculate that f(0.204 15) = 3.2× 10−4 and f(0.204 25) = −6.4× 10−4.
The root is therefore x = 0.2042 to 4 decimals.

55. (a) Iteration of x1 = 1, xn+1 = xn − x4
n − 15xn + 2
4x3

n − 15
gives

x2 = −0.09, x3 = 0.1333, x4 = 0.133 354 4, x5 = 0.133 354 4.

With f(x) = x4−15x+2, we calculate that f(0.133 353 5) = 1.4×10−5 and f(0.133 354 5) = −1.2×10−6.
The root is therefore x = 0.133 354 to 6 decimals.
(b) Iteration gives

x2 = 0.2, x3 = 0.133 44, x4 = 0.133 354 47, x5 = 0.133 354 42.

This leads to the same root as in part (a).
(c) Iteration of the sequence in part (a) beginning with x1 = 2.5 gives
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x2 = 2.425, x3 = 2.4201, x3 = 2.420 061 9, x4 = 2.420 061 9.

Since f(2.420 061 5) = −1.5 × 10−5 and f(2.420 062 5) = 2.7× 10−5, the root is x = 2.420 062.
(d) Iteration beginning with x1 = 2 gives

x2 = 1.2, x3 = 0.271 6, x4 = 0.133 696, x5 = 0.133 355.

The sequence is converging to the root in part (a). Beginning with x1 = 3, we obtain x2 = 5.5 and
x3 = 61.1. The sequence is diverging.

56. (a) d1 = 2(0.99)(20) = 40(0.99) m

d2 = 2(0.99)[(0.99)(20)] = 40(0.99)2 m

d3 = 2(0.99)[(20)(0.99)2] = 40(0.99)3 m

The pattern emerging is dn = 40(0.99)n m.

(b) When an object falls from rest under gravity, the distance that it falls as a function of time t is given
by d = 4.905t2. Consequently, the time to fall from peak height between nth and (n + 1)th bounces is
given by dn/2 = 4.905t2. When this equation is solved for t, the result is t =

√
dn/9.81, and therefore

tn = 2
√

dn/9.81 = 2
√

40(0.99)n/9.81 =
4√

0.981
(0.99)n/2 s.

57. The dog reaches the farmer for the first time 2/3 km from the farmhouse. When the dog returns to the
farmhouse (travelling 2/3 km), the farmer moves to a distance 1/3 km from the farmhouse. The dog
then runs (2/3)(1/3) = 2/9 km in reaching the farmer for the second time. Thus, d1 = 2/3 + 2/9 = 8/9
km. When the dog returns to the farmhouse for the second time, the farmer moves to a distance 1/9
km from the farmhouse. The dog then runs (2/3)(1/9) = 2/27 km in reaching the farmer for the third
time. Thus, d2 = 2/9 + 2/27 = 8/27 km. The pattern emerging is dn = 8/3n+1 km.

2/9

1/3

2/3

1

Meeting Meeting
FirstSecond

Farmhouse

58. Since each of the 12 straight line segments in the middle figure has length P/9,

P1 =
12P

9
=

4P

3
.

Since each of the 48 straight line segments in the right figure has length P/27,

P2 =
48P

27
=

42P

32
.

The next perimeter is P3 = 4(48)
P

81
=

43P

33
. The pattern emerging is Pn =

4nP

3n
. The limit of Pn as

n → ∞ does not exist.

59. (a) Since y(3) = 11.8 and y(4) = −3.0, the solution is between 3 and 4. To find it more accurately we
use

t1 = 3.8, tn+1 = tn − 1181(1− e−tn/10) − 98.1tn
118.1e−tn/10 − 98.1

.

Iteration gives t2 = 3.833 4 and t3 = 3.833 2. Since y(3.825) = 0.14 and y(3.835) = −0.03, it follows that
to 2 decimals t = 3.83 s.
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(b) If air resistance is ignored, the acceleration of the stone is a = dv/dt = −9.81. Antidifferentiation
gives v(t) = −9.81t + C. Since v(0) = 20, it follows that C = 20, and v(t) = dy/dt = −9.81t + 20.
Antidifferentiation now gives y(t) = −4.905t2 + 20t + D. Since y(0) = 0, we find that D = 0, and the
height of the stone is y(t) = −4.905t2 + 20t. When we set 0 = y = −4.905t2 + 20t, the positive solution
is 4.08 s.

60. The figure shows graphs of y = tan x and
y = (ex − e−x)/(ex + e−x) = tanh x for x ≥ 0.
They intersect at x = 0 and values near 4 and 7.
We use Newton’s iterative procedure

xn+1 = xn − tan xn − tanh xn

sec2 xn − sech2xn

with x1 = 4 to locate the smaller root.

y

xp p2

Iteration gives x2 = 3.932 25, x3 = 3.926 63,

x4 = 3.926 60, x5 = 3.926 60. When we divide this by 20π, the result is 0.0625. A similar procedure
gives the next natural frequency 0.1125.

61. Since the area of an equilateral triangle with sides of length l is
√

3l2/4, the area of the first triangle in

Exercise 58 is
√

3
4

(
P

3

)2

=
√

3P 2

36
. The middle figure adds three triangles each of area

√
3(P/9)2/4 to

the area in the first figure, and therefore

A1 =
√

3P 2

36
+

3
√

3
4

(
P 2

81

)
=

√
3P 2

36
+

√
3P 2

3 · 36
.

The right figure adds twelve triangles each of area
√

3(P/27)2/4 to the middle figure, and therefore

A2 = A1 +
12

√
3

4

(
P

27

)2

=
√

3P 2

36
+

√
3P 2

3 · 36
+

4
√

3P 2

33 · 36
.

The next figure in the sequence would add 48 triangles each of area
√

3(P/81)2/4, and therefore

A3 = A2 +
48

√
3

4

(
P

81

)2

=
√

3P 2

36
+

√
3P 2

3 · 36
+

4
√

3P 2

33 · 36
+

42
√

3P 2

35 · 36
.

The pattern emerging is An =
√

3P 2

36

(
1 +

1
3

+
4
33

+
42

35
+ · · · + 4n−1

32n−1

)
.

62. The next two terms are 1113213211, 31131211131221. Reason as follows: The second term is 11 because
there is one 1 in the first term; the third term is 21 because the second term has two 1’s; the fourth term
is 1211 because the third term has one 2 followed by one 1; the fifth term is 111221 because the fourth
term is one 1, followed by one 2, followed by two 1’s; etc.

63. Plots of the sequences are shown below.

(a) (b)
cn

n

2

1

5 10 15 20 n

An
2

1

5 10 15 20
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64. The plot of the seven-point averager is shown
to the right. An

n5 10 15 20

0.5

1

1.5

2

65. An explicit formula for this FIR is Fn =
n

n + 1
+ 2

(
n − 1

n

)
−
(

n − 2
n − 1

)
. When we substitute n =

3, . . . , 12, we obtain the first 10 terms,

19
12

,
49
30

,
101
60

,
181
105

,
295
168

,
449
252

,
649
360

,
901
495

,
1211
660

,
1585
858

.

66. An explicit formula for this FIR is

Fn =
1
n2

sin
(n

3

)
−

2
(n − 1)2

sin
(

n − 1
3

)
+

3
(n − 2)2

sin
(

n − 2
3

)
−

4
(n − 3)2

sin
(

n − 3
3

)
.

When we substitute n = 4, . . . , 13, we obtain the first 10 terms,

−0.9712, −0.4196, −0.2461, −0.1593, −0.1059, −0.0693, −0.0430, −0.0237, −0.0096, 0.0002.

67. (a) The height of the curve y = g(x) at the
point A with x-coordinate x1 is y = g(x1).
If we proceed horizontally to the line y = x,
the coordinates of the point B on the line
are

(
g(x1), g(x1)

)
. But the second term

in the sequence established by the method
of successive substitutions is x2 = g(x1).
Hence the x-coordinate of B is x2. The
height of the curve y = g(x) at C is y = g(x2).
The point D has coordinates

(
g(x2), g(x2)

)
,

and hence, the x-coordinate of D is x3 = g(x2).
Continuation leads to the interpretation of the
{xn} as shown in the figure.

y

x

y x=

y=g x

D
C x g x

B g x g x

( )

( ( 1),

( 2, ( 2)

( 1))

)

x g x( 1 ( 1))A ,

x x x3 2 1

(b) (c)

y
y=x

y=g x

xx xx x 12 34 5

( )

x

y

x

y=g x

y=x

x x x

( )

1 2 3

(d) It appears that the slope of y = g(x) near the required root dictates whether the sequence converges.
For slopes near zero (figures in (a) and (b)), the sequence converges, but for large slopes (figure in (c)),
the sequence diverges.
(e)
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xx x2 1a

If we apply the mean value theorem (Theorem ‘mean value theorem’) to g(x) on the interval between
α and x1,

g(x1) = g(α) + g′(c)(x1 − α)

where c is between α and x1. Since α = g(α), x2 = g(x1), and |g′(c)| ≤ a, we may write that

x2 = α + g′(c)(x1 − α) =⇒ |x2 − α| = |g′(c)‖x1 − α| ≤ a|x1 − α|.

What this means is that x2 is closer to α than x1. If we repeat this procedure for x3 = g(x2) on the
interval between α and x2, we obtain

|x3 − α| ≤ a|x2 − α| ≤ a2|x1 − α|.

Continuation of this process gives |xn − α| ≤ an−1|x1 − α|. It now follows that

lim
n→∞

|xn − α| ≤ lim
n→∞

an−1|x1 − α| = 0 =⇒ lim
n→∞

xn = α.

68. Newton’s iterative procedure defines the sequence xn+1 = xn − f(xn)
f ′(xn)

. If we define F (x) = x −

f(x)/f ′(x), then xn+1 = F (xn). According to part (e) of Exercise 67, a sequence of this type con-
verges to a root x = α of x = F (x) if on the interval |x − α| ≤ |x1 − α| we have |F ′(x)| ≤ a < 1. Since

F ′(x) = 1− [(f ′)2 − ff ′′]/(f ′)2, we will have convergence if 1 > a ≥
∣∣∣∣1 − (f ′)2 − ff ′′

(f ′)2

∣∣∣∣ =
∣∣∣∣
ff ′′

(f ′)2

∣∣∣∣. Thus,

Newton’s sequence converges to α if on |x−α| ≤ |x1−α|, |ff ′′/(f ′)2| ≤ a < 1. In other words, if it is pos-
sible to choose x1 close enough to α to guarantee |ff ′′/(f ′)2| ≤ a < 1, on the interval |x−α| ≤ |x1 −α|,
then Newton’s sequence converges to α. To show that this is always possible, we let M be the maximum
value of |f ′′| on the open interval containing α in which f ′′(x) is known to exist. Because f ′(α) 6= 0,
there exists an open interval I containing α in which f ′(x) 6= 0 (by continuity of f ′(x)). Let m be the
minimum value of |f ′(x)| on I . Since f(x) is continuous at x = α, where f(α) = 0, there exists an open
interval |x−α| < δ contained in I which |f(x)| < am2/M for any a such that 0 < a < 1. Consequently,
for |x − α| < δ,

∣∣∣∣
ff ′′

(f ′)2

∣∣∣∣ <
am2

M

M

m2
= a < 1.

Thus, if |x1 − α| = δ, we may say that for all x in |x− a| < |x1 −α|, |ff ′′/(f ′)2| < a < 1, and Newton’s
iterative sequence converges to α.

EXERCISES 10.2

1. The limit function is f(x) = 0, since for 2. The limit function is f(x) = 0, since for
each x in 0 ≤ x ≤ 1, each x in 0 ≤ x ≤ 1,

lim
n→∞

nx

1 + n2x2
= lim

n→∞

x

1/n + nx2
= 0. lim

n→∞

n2x

1 + n3x2
= lim

n→∞

x

1/n2 + nx2
= 0.

y

x

1/2

1

f

f

f
f

f1

2

3

4

5

y

x

f

f
f
f

f1
2

3

4

5

1

1
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3. The limit function is f(x) = x, since for 4. The limit function is f(x) = 1/x.
each x in 0 ≤ x ≤ 1,

lim
n→∞

nx2

1 + nx
= lim

n→∞

x2

1/n + x
= x.

y

x

4/5

1

f

f
f
f

f1

2

3

4
5

y

x

2

1

1 2

f

f
f

f

f1

2

3

4

5

5. Since fn(0) = fn(1) = 0, the limit function 6. There is no limit function.
f(x) has values f(0) = f(1) = 0. For fixed
x in 0 < x < 1,

f(x) = lim
n→∞

nxn(1 − x) = lim
n→∞

n(1 − x)
x−n

= lim
n→∞

1 − x

−x−n ln x
= lim

n→∞

xn(x − 1)
ln x

= 0.

y

1/4

1

f

f
f

f

f1

2

3
4 5

x

y

x

-1

-2

1 2

f

f
f

f
f1

2

3
4

5

7. There is no limit function. 8. Since fn(0) = fn(1) = 0, the limit function
f(x) has values f(0) = f(1) = 0. For fixed
x in 0 < x < 1,

f(x) = lim
n→∞

n2xn(1 − x2) = lim
n→∞

n2(1 − x2)
x−n

= lim
n→∞

2n(1− x2)
−x−n ln x

= lim
n→∞

2(1− x2)
x−n(ln x)2

= lim
n→∞

2(1− x2)xn

(ln x)2
= 0.

y

x

100

50

1 2

f

f
f

f

f1
2

3

4

5

y

x

2

-2

-1 1

f

f

f

f

f1
2

3

4

5

f

f

f

f

f1

2

3

4

5
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9. The limit function f(x) has value 2 at x = 0, 10. The limit function is f(x) = 1.
and for all other vaues of x,

f(x) = lim
n→∞

2 + nx2

1 + nx
= lim

n→∞

2/n + x2

1/n + x
= x.

y
2

1

1 2

f

f
f

f

f1

2

3

4
5

x

y

x

1

p

f

f

f

f

f1
2

3

4 5

11. The limit function f(x) has value 1 for 12. The limit function is f(x) = 1.
all x except x = 0, π, where its value is 0.

y

x

1

p

f

f

f

f

f1
2

3

4 5

y

x

1

p

f

f f

f
f1

2
3

4

5

13. The limit function f(x) has value 1 for 14. The limit function is f(x) = lim
n→∞

n2x

enx

all x except x = π, where its value is 0. = lim
n→∞

2nx

xenx
= lim

n→∞

2x

x2enx
= 0.

y

x

1

p

f

f f

f
f1

2
3

4

5

y

x

2

1

2 4

f

f

f

f

f1

2

3

4

5

15. The sequence {xn} converges to 0 for −1 < x < 1, to 1 for x = 1, and diverges for all other values of x.
Hence, the sequence {(1− xn)/(1− x)} converges to 1/(1− x) for −1 < x < 1 and diverges for all other
values of x.
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EXERCISES 10.3

1. Since f(0) = 1, f ′(0) = − sin 0 = 0, f ′′(0) = − cos 0 = −1, f ′′′(0) = sin 0 = 0, f ′′′′(0) = cos 0 = 1, etc.,
Taylor’s remainder formula gives

cosx = 1 − x2

2!
+

x4

4!
− · · · + term in xn + Rn,

where Rn =
dn+1

dxn+1
(cosx)|x=zn

xn+1

(n + 1)!
. The nth

derivative of cosx is ± sinx or ± cosx, so that∣∣∣∣
dn+1

dxn+1
cosx|x=zn

∣∣∣∣ ≤ 1.

Hence, |Rn| ≤ |x|n+1/(n + 1)!. But according
to Example 10.5, limn→∞ |x|n/n! = 0 for any

y

x

2

1

-1

-2

p p-

P P

P P

P P
x

4 5

0 1

2 3

cos

,

,

,

x whatsoever. It follows that limn→∞ Rn = 0, and the Maclaurin series for cosx therefore converges to
cosx for all x. We may write

cosx = 1 − x2

2!
+

x4

4!
+ · · · , −∞ < x < ∞.

2. Since f (n)(x) = 5ne5x, Taylor’s remainder formula for e5x and c = 0 gives

e5x = 1 + 5x +
52

2!
x2 +

53

3!
x3 + · · · + 5n

n!
xn + Rn,

where Rn =
dn+1

dxn+1
(e5x)|x=zn

xn+1

(n + 1)!
=

5n+1e5zn

(n + 1)!
xn+1.

If x < 0, then x < zn < 0, and |Rn| < 5n+1|x|n+1/(n + 1)!.
According to Example 10.5, limn→∞ |x|n/n! = 0
for any x whatsoever, and therefore
limn→∞ 5n+1|x|n+1/(n + 1)! = 0 also.
Thus, if x < 0, limn→∞ Rn = 0. If x > 0,

y

x

5

-5

-1 1

P

PP

P
P

PP
P

P

P P

0

12

3

4

5

1

2

3

4

5

5e x

then 0 < zn < x, and

|Rn| <
5n+1e5x

(n + 1)!
|x|n+1 = e5x

(
5n+1|x|n+1

(n + 1)!

)
.

But we have just indicated that limn→∞ 5n+1|x|n+1/(n + 1)! = 0, and therefore limn→∞ Rn = 0 for
x > 0 also. Thus, for any x whatsoever, the sequence {Rn} has limit 0, and the Maclaurin series for e5x

converges to e5x,

e5x =
∞∑

n=0

5n

n!
xn, −∞ < x < ∞.

3. Since f(0) = sin (0) = 0, f ′(0) = 10 cos 0 = 10, f ′′(0) = −102 sin 0 = 0, f ′′′(0) = −103 cos 0 = −103,
f ′′′′(0) = 104 sin 0 = 0, etc., Taylor’s remainder formula gives

sin (10x) = 10x − 103x3

3!
+

105x5

5!
+ · · · + term in xn + Rn,
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where Rn =
dn+1

dxn+1
[sin (10x)]|x=zn

xn+1

(n + 1)!
. The nth derivative of sin (10x) is ±10n sin (10x) or

±10n cos (10x), so that∣∣∣∣
dn+1

dxn+1
[sin (10x)]|x=zn

∣∣∣∣ ≤ 10n+1.

Hence, |Rn| ≤ 10n+1|x|n+1/(n + 1)!. According
to Example 10.5, limn→∞ |x|n/n! = 0
for any x whatsoever, and therefore
limn→∞ 10n+1|x|n+1/(n + 1)! = 0 also. It
follows that limn→∞ Rn = 0, and the
Maclaurin series for sin (10x) therefore
converges to sin (10x) for all x.
We may write

sin (10x) = 10x− 103x3

3!
+

105x5

5!
+ · · · , −∞ < x < ∞.

y

x

1

-1

p/5
p/5-

P P

P P

P
1 2

3 4

5

sin x

P0

,

,

(10 )

4. Since f(π/4) = sin (π/4) = 1/
√

2, f ′(π/4) = cos (π/4) = 1/
√

2, f ′′(π/4) = − sin (π/4) = −1/
√

2,
f ′′′(π/4) = − cos (π/4) = −1/

√
2, f ′′′′(π/4) = sin (π/4) = 1/

√
2, etc., Taylor’s remainder formula gives

sinx =
1√
2

+
1√
2
(x − π/4) − 1

2!
√

2
(x − π/4)2 − 1

3!
√

2
(x − π/4)3 + . . . + term in (x − π/4)n + Rn,

where Rn =
dn+1

dxn+1
(sin x)|x=zn

(x − π/4)n+1

(n + 1)!
.

The nth derivative of sin x is ± sinx or
± cosx, so that∣∣∣∣

dn+1

dxn+1
(sin x)|x=zn

∣∣∣∣ ≤ 1.

Hence, |Rn| ≤ |x − π/4|n+1/(n + 1)!. According
to Example 10.5, limn→∞ |x|n/n! = 0
for any x whatsoever, and therefore
limn→∞ |x − π/4|n+1/(n + 1)! = 0 also. It
follows that limn→∞ Rn = 0, and the
Taylor series for sin x about π/4
therefore converges to sin x for all x.

y

x

3

-3

p2

P

P

P

3

4

5P

P

P

0

1

2

p2-

sinx

We may write

sin x =
1√
2

[
1 + (x − π/4) − 1

2!
(x − π/4)2 − 1

3!
(x − π/4)3 + · · ·

]
, −∞ < x < ∞.

5. Since f (n)(x) = 2ne2x, Taylor’s remainder formula for e2x and c = 1 gives

e2x = e2 + 2e2(x − 1) +
22e2

2!
(x − 1)2 +

23e2

3!
(x − 1)3 + · · · + 2ne2

n!
(x − 1)n + Rn,

where Rn =
dn+1

dxn+1
(e2x)|x=zn

(x − 1)n+1

(n + 1)!
=

2n+1e2zn

(n + 1)!
(x − 1)n+1. If x < 1, then x < zn < 1, and |Rn| <

2n+1e2|x − 1|n+1/(n + 1)!. According to Example 10.5, limn→∞ |x|n/n! = 0 for any x whatsoever, and
therefore limn→∞ 2n+1e2|x − 1|n+1/(n + 1)! = 0 also.
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Thus, if x < 1, limn→∞ Rn = 0. If x > 1,
then 1 < zn < x, and

|Rn| <
2n+1e2x

(n + 1)!
|x − 1|n+1 = e2x

[
2n+1|x − 1|n+1

(n + 1)!

]
.

But we have just indicated that
limn→∞ 2n+1|x − 1|n+1/(n + 1)! = 0, and
therefore limn→∞ Rn = 0 for x > 1 also.
Thus, for any x whatsoever, the
sequence {Rn} has limit 0, and the
Taylor series for e2x converges to e2x,

y

x

20

-20

-1 1 2

P

PP

P

P

P

0

1
2

3

4

5

e x2

e2x =
∞∑

n=0

2ne2

n!
(x − 1)n, −∞ < x < ∞.

6. Since f (n)(0) = 2n, the Maclaurin
series for e2x is

∞∑

n=0

2n

n!
xn = 1 + 2x +

22x2

2!
+ · · ·.

Plots of the polynomials suggest that
the series converges to e2x for all x.
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7. Since f(0) = 1, f ′(0) = 0, f ′′(0) = −32,
f ′′′(0) = 0, f ′′′′(0) = 34, etc., the
Maclaurin series for cos 3x is

1 − 32x2

2!
+

34x4

4!
+ · · · =

∞∑

n=0

(−1)n32n

(2n)!
x2n.

Plots of the polynomials suggest that
the series converges to cos 3x for all x.

y

x

1

-1

p p-

P

P

P

P
0

cosx

6

18

12

8. Since f(π/2) = 1, f ′(π/2) = 0,
f ′′(π/2) = −1, f ′′′(π/2) = 0, and
f ′′′′(π/2) = 1, the Taylor series for sinx
about x = π/2 is

1 −
(x − π/2)2

2!
+ · · · =

∞∑

n=0

(−1)n

(2n)!
(x − π/2)2n.

Plots of the polynomials suggest that the
series converges to sin x for all x.
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9. Since f (n)(0) = n!, the Maclaurin
series for 1/(1− x) is

∞∑

n=0

xn = 1 + x + x2 + x3 + · · · .

Plots of the polynomials suggest that the
series converges to 1/(1− x) for −1 < x < 1.

y

x

5

-5

-2 -1 1 2

P

P

P
PP

0

1

2

3
4

P

P

P

P

P

0

1

2

3

4

1
1- x

10. Since f (n)(1) = n!, the Taylor series for
1/(2− x) about x = 1 is
∞∑

n=0

(x − 1)n = 1 + (x − 1) + (x − 1)2 + · · · .

Plots of the polynomials suggest that the
series converges to 1/(2− x) only for
0 < x < 2.
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11. By writing f(x) in the form 1/2− (1/2)/(1 + 2x)
and taking derivatives, we quickly discover that
f (n)(0) = (−1)n+12n−1n! for n ≥ 1. The
Maclaurin series for f(x) is therefore
∞∑

n=1

(−1)n+12n−1xn = x − 2x2 + 4x3 − 8x4 + · · · .

Plots of the polynomials suggest that the
series converges to x/(1 + 2x) only for
−1/2 < x < 1/2.
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12. Since f (n)(0) = (−1)n3n(n + 1)!, the Maclaurin
series for 1/(1 + 3x)2 is
∞∑

n=0

(−1)n3n(n + 1)xn = 1 − 6x + 32(3)x2 + · · · .

Plots of the polynomials suggest that the
series converges to 1/(1 + 3x)2 only for
−1/3 < x < 1/3.
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13. Since f (n)(2) = (−1)n+1(n − 1)!/2n for n ≥ 1,
the Taylor series for ln x about x = 2 is

ln 2 +
∞∑

n=1

(−1)n+1

n 2n
(x − 2)n

= ln 2 +
(x − 2)

2
− (x − 2)2

2 · 22
+ · · · .

Plots of the polynomials suggest that the
series converges to ln x only for
0 < x < 4.
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14. Calculating derivatives of the function leads to

the formula f (n)(0) =
(−1)n+13n[1 · 3 · 5 · · · (2n − 3)]

2n

for n ≥ 2, together with f(0) = 1 and f ′(0) = 3/2.
The Maclaurin series for

√
1 + 3x is therefore

1 +
3x

2
+

∞∑

n=2

(−1)n+13n[1 · 3 · 5 · · · (2n − 3)]
2n n!

xn.

Plots of the polynomials suggest that the
series converges to

√
1 + 3x only for

−1/3 ≤ x ≤ 1/3.

y

x

2

1

-1

-1 1

P

P

P
P P

0

1

2
3 4

P

P

P

P

P

0

1

2

3

41+3x,

15. Calculating derivatives of the function leads

to the formula f (n)(2) =
(−1)n[1 · 4 · 7 · · · (3n − 2)]

2n32n61/3

for n ≥ 1. The Taylor series for 1/(4 + x)1/3

about x = 2 is therefore
1

61/3
+

∞∑

n=1

(−1)n[1 · 4 · 7 · · · (3n − 2)]
2n32n61/3n!

(x − 2)n.

Plots of the polynomials suggest that the
series converges to 1/(4 + x)1/3 only for
−4 < x < 8.

y

x

1

-1

-5 5

P
P

P

P
P

0

1

2

3
4

x
1

(4+ )1/3

16. If I ′ is the open interval in which f ′(x) and f ′′(x) are continuous, and we apply Taylor’s remainder
formula to f(x) at x0 in I ′, we obtain

f(x) = f(x0) + f ′(x0)(x − x0) +
f ′′(z1)

2!
(x − x0)2 = f(x0) +

f ′′(z1)
2

(x − x0)2,

where z1 is between x0 and x. Suppose that f ′′(x0) > 0. Because f ′′(x) is continuous at x0, there exists
an open interval I containing x0 in which f ′′(x) > 0. For any x in this interval, it follows that f ′′(z1) > 0
also. As a result, for any x in I , f(x) > f(x0), and f(x) must have a relative minimum at x0. A similar
discussion shows that when f ′′(x0) < 0, the function has a relative maximum at x0. If f ′′(x0) = 0, no
conclusion can be reached.

17. If I ′ is the open interval in which f(x) has derivatives of all orders, and we apply Taylor’s remainder
formula to f(x) at x0 in I ′, we obtain

f(x) = f(x0) + f ′(x0)(x − x0) + · · · + f (n)(x0)
n!

(x − x0)n +
f (n+1)(zn)
(n + 1)!

(x − x0)n+1

= f(x0) +
f (n+1)(zn)
(n + 1)!

(x − x0)n+1
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where zn is between x0 and x.

(i) Consider first the case that n is even, and suppose that f (n+1)(x0) > 0. (A similar proof follows in
the case that f (n+1)(x0) < 0.) Because f (n+1)(x) is continuous at x0, there exists an open interval I
containing x0 in which f (n+1)(x) > 0. For any x in this interval, it follows that f (n+1)(zn) > 0 also. As
a result, when x < x0, f(x) < f(x0), and when x > x0, f(x) > f(x0). This implies that x0 must yield a
horizontal point of inflection.

(ii) Consider now when n is odd and f (n+1)(x0) > 0. In this case, for any x in I , f(x) > f(x0) and f(x)
must have a relative minimum at x0.

(iii) When n is odd and f (n+1)(x0) < 0, f(x) < f(x0) in I , and f(x) has a relative maximum at x0.

18. (a) This follows from
∫ x

c

f ′(t) dt =
{
f(t)

}x

c
= f(x) − f(c).

(b) If we set u = f ′(t), du = f ′′(t) dt, dv = dt, and v = t − x, then

f(x) = f(c) +
{
(t − x)f ′(t)

}x

c
−
∫ x

c

(t − x)f ′′(t) dt = f(c) + f ′(c)(x − c) +
∫ x

c

(x − t)f ′′(t) dt.

(c) If we now set u = f ′′(t), du = f ′′′(t) dt, dv = (x − t) dt, and v = −(1/2)(x − t)2,

f(x) = f(c) + f ′(c)(x − c) +
{
− (x − t)2f ′′(t)

2

}x

c

−
∫ x

c

−1
2
(x − t)2f ′′′(t) dt

= f(c) + f ′(c)(x − c) +
f ′′(c)

2
(x − c)2 +

1
2

∫ x

c

(x − t)2f ′′′(t) dt.

(d) One more integration by parts should convince us that the formula is correct. If we set u = f ′′′(t),
du = f ′′′′(t) dt, dv = (x − t)2 dt, and v = −(1/3)(x − t)3,

f(x) = f(c) + f ′(c)(x − c) +
f ′′(c)

2
(x − c)2 +

1
2

{
− (x − t)3f ′′′(t)

3

}x

c

− 1
2

∫ x

c

−1
3
(x − t)3f ′′′′(t) dt

= f(c) + f ′(c)(x − c) +
f ′′(c)

2
(x − c)2 +

f ′′′(c)
3!

(x − c)3 +
1
3!

∫ x

c

(x − t)3f ′′′′(t) dt.

19. (a) Limits as x → 0+ and x → ∞
together with symmetry about the y-axis
give the graph to the right.
(b) If we can show that

lim
x→0+

e−1/x2

xn
= 0,

then the limit from the left must also be zero.

Suppose we set L = lim
x→0+

e−1/x2

xn
, and take logarithms,

y

x

1

-5 5

ln L = − lim
x→0+

(
1
x2

+ n ln x

)
= − lim

x→0+

(
1 + nx2 ln x

x2

)
.

Since lim
x→0+

x2 ln x = lim
x→0+

ln x

1/x2
= lim

x→0+

1/x

−2/x3
= lim

x→0+
(−x2/2) = 0, it follows that ln L → −∞ as x →

0+. Therefore, L = 0.

(c) f ′(0) = lim
h→0

f(h) − f(0)
h

= lim
h→0

e−1/h2

h
= 0, by part (b). Suppose that k is some integer for which

f (k)(0) = 0. Then

f (k+1)(0) = lim
h→0

f (k)(h) − fk(0)
h

= lim
h→0

f (k)(h)
h

.
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Now, any number of differentiations of f(x) = e−1/x2
gives rise to terms of the form Ae−1/x2

/xn, where
n is a positive integer, and A is a constant. It follows that f (k)(h)/h must consist of terms of the form
Ae−1/h2

/hn which have limit zero as h → 0. Thus, f (k+1)(0) = 0, and by mathematical induction,
f (n)(0) = 0 for all n ≥ 1.
(d) The Maclaurin series for f(x) is

f(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 + · · · = 0 + 0 + 0 + · · · .

(e) This series converges to f(x) only at x = 0.

EXERCISES 10.4

1. Since the radius of convergence is R = lim
n→∞

∣∣∣∣
1/n

1/(n + 1)

∣∣∣∣ = 1, the open interval of convergence is −1 <

x < 1.

2. Since the radius of convergence is R = lim
n→∞

∣∣∣∣
n2

(n + 1)2

∣∣∣∣ = 1, the open interval of convergence is −1 <

x < 1.

3. Since the radius of convergence is R = lim
n→∞

∣∣∣∣
1/(n + 1)3

1/(n + 2)3

∣∣∣∣ = 1, the open interval of convergence is −1 <

x < 1.

4. Since the radius of convergence is R = lim
n→∞

∣∣∣∣
n23n

(n + 1)23n+1

∣∣∣∣ =
1
3
, the open interval of convergence is

−1/3 < x < 1/3.

5. Since the radius of convergence is R = lim
n→∞

∣∣∣∣
1/2n

1/2n+1

∣∣∣∣ = 2, the open interval of convergence is −1 < x < 3.

6. Since the radius of convergence is R = lim
n→∞

∣∣∣∣
(−1)nn3

(−1)n+1(n + 1)3

∣∣∣∣ = 1, the open interval of convergence is

−4 < x < −2.

7. Since the radius of convergence is R = lim
n→∞

∣∣∣∣
1/

√
n

1/
√

n + 1

∣∣∣∣ = 1, the open interval of convergence is −3 <

x < −1.

8. Since the radius of convergence is R = lim
n→∞

∣∣∣∣∣∣∣∣∣

2n

(
n − 1
n + 2

)2

2n+1

(
n

n + 3

)2

∣∣∣∣∣∣∣∣∣
=

1
2
, the open interval of convergence is

7/2 < x < 9/2.

9. If we set y = x2, then
∞∑

n=1

1
n2

x2n =
∞∑

n=1

1
n2

yn. Since Ry = lim
n→∞

∣∣∣∣
1/n2

1/(n + 1)2

∣∣∣∣ = 1, it follows that Rx =
√

Ry = 1. The open interval of convergence is therefore −1 < x < 1.

10. If we set y = x3, then
∞∑

n=0

(−1)nx3n =
∞∑

n=0

(−1)nyn. Since Ry = lim
n→∞

∣∣∣∣
(−1)n

(−1)n+1

∣∣∣∣ = 1, it follows that

Rx = Ry
1/3 = 1. The open interval of convergence is therefore −1 < x < 1.

11. Since the radius of convergence is R = lim
n→∞

∣∣∣∣
2n(n − 1)/(n + 1)

2n+1n/(n + 2)

∣∣∣∣ = 1/2, the open interval of convergence

is −1/2 < x < 1/2.

12. If we set y = x3, then
∞∑

n=0

1√
n + 1

x3n+1 = y1/3
∞∑

n=0

1√
n + 1

yn. Since Ry = lim
n→∞

∣∣∣∣
1/

√
n + 1

1/
√

n + 2

∣∣∣∣ = 1, it

follows that Rx = R
1/3
y = 1. The open interval of convergence is therefore −1 < x < 1.
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13. If we set y = x2, then
∞∑

n=0

(−1)n

3n
x2n+1 = ±√

y

∞∑

n=0

(−1)n

3n
yn. Since Ry = lim

n→∞

∣∣∣∣
(−1)n/3n

(−1)n+1/3n+1

∣∣∣∣ = 3, it

follows that Rx =
√

Ry =
√

3. The open interval of convergence is therefore −
√

3 < x <
√

3.

14. Since the radius of convergence is R = lim
n→∞

∣∣∣∣
(−e)n/n2

(−e)n+1/(n + 1)2

∣∣∣∣ =
1
e
, the open interval of convergence

is −1/e < x < 1/e.

15. Since the radius of convergence is R = lim
n→∞

∣∣∣∣
n2/32n

(n + 1)2/32n+2

∣∣∣∣ = 9, the open interval of convergence is

−9 < x < 9.

16. Since the radius of convergence is R = lim
n→∞

∣∣∣∣
nn

(n + 1)n+1

∣∣∣∣ = lim
n→∞

(
n

n + 1

)n( 1
n + 1

)
=

1
e
(0) = 0, the

series converges only for x = 0.

17. Since the radius of convergence is R = lim
n→∞

∣∣∣∣
1/n2

1/(n + 1)2

∣∣∣∣ = 1, the open interval of convergence is −11 <

x < −9.

18. Since the radius of convergence is R = lim
n→∞

∣∣∣∣
n33n

(n + 1)33n+1

∣∣∣∣ =
1
3
, the open interval of convergence is

−1/3 < x < 1/3.

19. If we set y = x2, then
∞∑

n=1

3n

(n + 1)2
x2n =

∞∑

n=1

3n

(n + 1)2
yn. Since Ry = lim

n→∞

∣∣∣∣
3n/(n + 1)2

3n+1/(n + 2)2

∣∣∣∣ = 1/3, it

follows that Rx =
√

Ry = 1/
√

3. The open interval of convergence is therefore −1/
√

3 < x < 1/
√

3.

20. If we set y = x3, the series becomes
∞∑

n=0

yn/5n. Since Ry = lim
n→∞

∣∣∣∣
1/5n

1/5n+1

∣∣∣∣ = 5, it follows that Rx =

Ry
1/3 = 51/3. The open interval of convergence is therefore −51/3 < x < 51/3.

21. Using L’Hôpital’s rule, R = lim
n→∞

∣∣∣∣
1/ lnn

1/ ln (n + 1)

∣∣∣∣ = lim
n→∞

ln (n + 1)
ln n

= lim
n→∞

1/(n + 1)
1/n

= 1. The open in-

terval of convergence is therefore −1 < x < 1.

22. Using L’Hôpital’s rule, R= lim
n→∞

∣∣∣∣∣∣∣∣

1
n2 ln n

1
(n + 1)2 ln (n + 1)

∣∣∣∣∣∣∣∣
= lim

n→∞

ln (n + 1)
ln n

= lim
n→∞

1/(n + 1)
1/n

= 1. The open

interval of convergence is therefore −1 < x < 1.

23. Since R = lim
n→∞

∣∣∣∣
(n!)3/(3n)!

[(n + 1)!]3/(3n + 3)!

∣∣∣∣ = lim
n→∞

(n!)3(3n + 3)(3n + 2)(3n + 1)(3n)!
(3n)!(n + 1)3(n!)3

= 27, the open inter-

val of convergence is −27 < x < 27.

24. Since R = lim
n→∞

∣∣∣∣
2 · 4 · 6 · · · (2n)

3 · 5 · 7 · · · (2n + 1)
3 · 5 · · · (2n + 3)
2 · 4 · · · (2n + 2)

∣∣∣∣ = lim
n→∞

2n + 3
2n + 2

= 1, the open interval of conver-

gence is −1 < x < 1.

25. Since R = lim
n→∞

∣∣∣∣∣∣∣∣

[1 · 3 · · · (2n + 1)]2

22n(2n)!
[1 · 3 · · · (2n + 3)]2

22n+2(2n + 2)!

∣∣∣∣∣∣∣∣
= lim

n→∞

4(2n + 2)(2n + 1)
(2n + 3)2

= 4, the open interval of convergence is

−4 < x < 4.

26.
∞∑

n=0

1
4n

x3n =
∞∑

n=0

(
x3

4

)n

=
1

1 − x3/4
=

4
4 − x3

provided
∣∣∣∣
x3

4

∣∣∣∣ < 1 =⇒ |x| < 41/3

27.
∞∑

n=1

(−e)nxn =
∞∑

n=1

(−ex)n =
−ex

1 + ex
provided | − ex| < 1 =⇒ |x| < 1/e
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28.
∞∑

n=1

1
32n

(x − 1)n =
∞∑

n=1

(
x − 1

9

)n

=

x − 1
9

1 −
x − 1

9

=
x − 1
10− x

provided
∣∣∣∣
x − 1

9

∣∣∣∣ < 1 =⇒ |x − 1| < 9

29.
∞∑

n=2

(x + 5)2n =
(x + 5)4

1 − (x + 5)2
provided |(x + 5)2| < 1 =⇒ |x + 5| < 1

30.
∞∑

n=0

(−1)n

(2n)!
x4n =

∞∑

n=0

(−1)n

(2n)!
(x2)2n = cos (x2) valid for all x

31.
∞∑

n=0

5n

n!
xn =

∞∑

n=0

1
n!

(5x)n = e5x valid for all x

32.
∞∑

n=0

(−1)n

32n+1(2n + 1)!
x2n+2 = x

∞∑

n=0

(−1)n

(2n + 1)!

(x

3

)2n+1

= x sin (x/3) valid for all x

33.
∞∑

n=0

(−3)n

n!
(x + 1)n =

∞∑

n=0

1
n!

[−3(x + 1)]n = e−3(x+1) valid for all x

34.
∞∑

n=1

(−1)n

n!
xn = −1 +

∞∑

n=0

1
n!

(−x)n = −1 + e−x valid for all x

35.
∞∑

n=0

(−1)n+1

(2n + 1)!
(x + 1)2n+3 = −(x + 1)2

∞∑

n=0

(−1)n

(2n + 1)!
(x + 1)2n+1 = −(x + 1)2 sin (x + 1) valid for all x

36.
∞∑

n=0

2n

n!
(x − 1/2)n =

∞∑

n=0

1
n!

(2x − 1)n = e2x−1 valid for all x

37.
∞∑

n=0

(−1)n

22n(2n)!
x4n+4 = x4

∞∑

n=0

(−1)n

(2n)!

(
x2

2

)2n

= x4 cos (x2/2) valid for all x

38. (a) J0(x) =
∞∑

n=0

(−1)n

22n(n!)2
x2n = 1 −

x2

22
+

x4

24(2!)2
−

x6

26(3!)2
+

x8

28(4!)2
− · · ·

J1(x) =
∞∑

n=0

(−1)n

22n+1(n!)(n + 1)!
x2n+1 =

x

2
−

x3

232!
+

x5

252!3!
−

x7

273!4!
+

x9

294!5!
− · · ·

Jm(x) =
xm

2mm!
− xm+2

2m+2(m + 1)!
+

xm+4

2m+42!(m + 2)!
− xm+6

2m+63!(m + 3)!
+

xm+8

2m+84!(m + 4)!
− · · · · · ·

(b) R = lim
n→∞

∣∣∣∣
(−1)n

22n+mn!(n + m)!
22n+m+2(n + 1)!(n + m + 1)!

(−1)n+1

∣∣∣∣ = lim
n→∞

22(n + 1)(n + m + 1) = ∞

The interval of convergence is therefore −∞ < x < ∞.

39. (a) 1 +
∞∑

n=1

α(α + 1) · · · (α + n − 1)β(β + 1) · · · (β + n − 1)
n! γ(γ + 1) · · · (γ + n − 1)

xn

(b) R = lim
n→∞

∣∣∣∣∣∣∣∣

α(α + 1) · · · (α + n − 1)β(β + 1) · · · (β + n − 1)
n! γ(γ + 1) · · · (γ + n − 1)

α(α + 1) · · · (α + n)β(β + 1) · · · (β + n)
(n + 1)! γ(γ + 1) · · · (γ + n)

∣∣∣∣∣∣∣∣
= lim

n→∞

(n + 1)(γ + n)
(α + n)(β + n)

= 1

EXERCISES 10.5

1.
1

3x + 2
=

1
2(1 + 3x/2)

=
1
2

∞∑

n=0

(
−3x

2

)n

=
∞∑

n=0

(−1)n3n

2n+1
xn, | − 3x/2| < 1 =⇒ |x| < 2/3
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2. f(x) =
1

4 + x2
=

1
4

(
1

1 + x2/4

)
=

1
4

∞∑

n=0

(
−x2

4

)n

=
∞∑

n=0

(−1)n

4n+1
x2n,

∣∣∣∣−
x2

4

∣∣∣∣ < 1 =⇒ |x| < 2

3. Since cosx =
∞∑

n=0

(−1)n

(2n)!
x2n, −∞ < x < ∞, it follows that

cos (x2) =
∞∑

n=0

(−1)n

(2n)!
(x2)2n =

∞∑

n=0

(−1)n

(2n)!
x4n, −∞ < x < ∞.

4. Since ex =
∞∑

n=0

1
n!

xn, −∞ < x < ∞, it follows that

e5x =
∞∑

n=0

1
n!

(5x)n =
∞∑

n=0

5n

n!
xn, −∞ < x < ∞.

5. Since f(x) = ex = e3 ex−3, and the Maclaurin series ex =
∞∑

n=0

1
n!

xn converges for all x, it follows that

ex = e3
∞∑

n=0

1
n!

(x − 3)n =
∞∑

n=0

e3

n!
(x − 3)n, −∞ < x < ∞.

6. Since f(x) = e1−2x = e e−2x, and the Maclaurin series ex =
∞∑

n=0

1
n!

xn converges for all x, it follows that

e1−2x = e

∞∑

n=0

1
n!

(−2x)n =
∞∑

n=0

e(−1)n2n

n!
xn, −∞ < x < ∞.

7. Since f(x) = e1−2x = e3−2(x+1) = e3 e−2(x+1), and the Maclaurin series ex =
∞∑

n=0

1
n!

xn converges for all

x, it follows that

e1−2x = e3
∞∑

n=0

1
n!

[−2(x + 1)]n =
∞∑

n=0

e3(−1)n2n

n!
(x + 1)n, −∞ < x < ∞.

8. coshx =
1
2
(ex + e−x) =

1
2

[ ∞∑

n=0

1
n!

xn +
∞∑

n=0

1
n!

(−x)n

]
=

1
2

∞∑

n=0

[1 + (−1)n]
n!

xn

=
1
2

(
2 +

2
2!

x2 +
2
4!

x4 + · · ·
)

= 1 +
1
2!

x2 +
1
4!

x4 + · · · =
∞∑

n=0

1
(2n)!

x2n, −∞ < x < ∞

9. sinh x =
1
2
(ex − e−x) =

1
2

[ ∞∑

n=0

1
n!

xn −
∞∑

n=0

1
n!

(−x)n

]
=

1
2

∞∑

n=0

[1 − (−1)n]
n!

xn

=
1
2

(
2x +

2
3!

x3 +
2
5!

x5 + · · ·
)

= x +
1
3!

x3 +
1
5!

x5 + · · · =
∞∑

n=0

1
(2n + 1)!

x2n+1, −∞ < x < ∞

10. This function is its own Maclaurin series.

11. Since f(−2) = 33, f ′(−2) = −46, f ′′(−2) = 54, f ′′′(−2) = −48, f ′′′′(−2) = 24, and f (n)(−2) = 0 for
n ≥ 5, formula 10.17 gives

f(x) = 33− 46(x + 2) +
54
2!

(x + 2)2 − 48
3!

(x + 2)3 +
24
4!

(x + 2)4

= 33− 46(x + 2) + 27(x + 2)2 − 8(x + 2)3 + (x + 2)4.
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12.
1

x + 3
=

1
5 + (x − 2)

=
1

5
(

1 +
x − 2

5

) =
1
5

∞∑

n=0

(
−x − 2

5

)n

=
∞∑

n=0

(−1)n

5n+1
(x − 2)n,

∣∣∣∣−
x − 2

5

∣∣∣∣ < 1 =⇒

−3 < x < 7
13. Long division gives

x

2x + 5
=

1
2
− 5/2

2x + 5
=

1
2
− 5/2

2(x − 1) + 7
=

1
2
− 5

14
[
1 +

2(x − 1)
7

] =
1
2
− 5

14

∞∑

n=0

[
−2

7
(x − 1)

]n

=
1
7

+
∞∑

n=1

5(−1)n+12n−1

7n+1
(x − 1)n,

∣∣∣∣−
2(x − 1)

7

∣∣∣∣ < 1 =⇒ −5
2

< x <
9
2

14. Long division gives

x2

3 − 4x
= −x

4
− 3

16
+

9/16
3 − 4x

= −1
4
(x − 2) − 11

16
+

9/16
−5 − 4(x − 2)

= −11
16

− 1
4
(x − 2) − 9/80

1 +
4(x − 2)

5

= −11
16

− 1
4
(x − 2) − 9

80

∞∑

n=0

[
−4

5
(x − 2)

]n

= −
11
16

−
1
4
(x − 2) −

9
80

[
1 −

4
5
(x − 2) +

∞∑

n=2

(−1)n4n

5n
(x − 2)n

]

= −4
5
− 4

25
(x − 2) +

∞∑

n=2

9(−1)n+14n−2

5n+1
(x − 2)n,

∣∣∣∣−
4(x − 2)

5

∣∣∣∣ < 1 =⇒ 3
4

< x <
13
4

15. With the binomial expansion 10.33b,

1√
1 + x

= (1 + x)−1/2 = 1 − x

2
+

(−1/2)(−3/2)
2!

x2 +
(−1/2)(−3/2)(−5/2)

3!
x3 + · · · , −1 < x ≤ 1

= 1 − x

2
+

3
222!

x2 − 3 · 5
233!

x3 + · · · = 1 +
∞∑

n=1

(−1)n[1 · 3 · 5 · · · (2n − 1)]
2nn!

xn

= 1 +
∞∑

n=1

(−1)n[1 · 2 · 3 · 4 · · · (2n)]
2nn![2 · 4 · 6 · · · (2n)]

xn =
∞∑

n=0

(−1)n(2n)!
22n(n!)2

xn

16. Term-by-term integration of
1

1 + 2x
=

∞∑

n=0

(−2x)n =
∞∑

n=0

(−1)n2nxn gives

1
2

ln |1 + 2x| =
∞∑

n=0

(−1)n2n

n + 1
xn+1 + C.

Setting x = 0 gives C = 0, and therefore ln |1 + 2x| =
∞∑

n=0

(−1)n2n+1

n + 1
xn+1. Since the radius of conver-

gence of the geometric series is 1/2, this is also the radius of convergence for the series of the logarithm
function. The open interval of convergence is therefore −1/2 < x < 1/2, and the absolute values may
be dropped,

ln (1 + 2x) =
∞∑

n=0

(−1)n2n+1

n + 1
xn+1 =

∞∑

n=1

(−1)n+12n

n
xn.
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17. With the binomial expansion 10.33b,

(1 + 3x)3/2 = 1 +
(

3
2

)
(3x) +

(3/2)(1/2)
2!

(3x)2 +
(3/2)(1/2)(−1/2)

3!
(3x)3 + · · · , −1 ≤ 3x ≤ 1

= 1 +
9
2
x +

33

222!
x2 − 34

233!
x3 +

35(1)(3)
244!

x4 − 36(1)(3)(5)
255!

x5 + · · ·

= 1 +
9
2
x +

27
8

x2 − 27
16

x3 +
∞∑

n=4

(−1)n[1 · 3 · 5 · · · (2n − 5)]3n+1

2nn!
xn

= 1 +
9
2
x +

27
8

x2 − 27
16

x3 +
∞∑

n=4

(−1)n[1 · 2 · 3 · 4 · · · (2n − 5)(2n − 4)]3n+1

[2 · 4 · · · (2n − 4)]2nn!
xn

= 1 +
9
2
x +

27
8

x2 − 27
16

x3 +
∞∑

n=4

(−1)n(2n − 4)! 3n+1

22n−2n! (n − 2)!
xn

= 1 +
9
2
x +

∞∑

n=2

(−1)n(2n − 4)! 3n+1

22n−2n! (n − 2)!
xn, −

1
3
≤ x ≤

1
3
.

18. Termwise integration of

1
x

=
1

2 + (x − 2)
=

1
2[1 + (x − 2)/2]

=
1
2

∞∑

n=0

(
−x − 2

2

)n

=
∞∑

n=0

(−1)n

2n+1
(x − 2)n

gives ln |x| =
∞∑

n=0

(−1)n

(n + 1)2n+1
(x − 2)n+1 + C . Setting x = 2 gives C = ln 2, and therefore

ln |x| = ln 2 +
∞∑

n=0

(−1)n

(n + 1)2n+1
(x − 2)n+1. Since the radius of convergence of the geometric series is 2,

this is also the radius of convergence for the series of the logarithm function. The open interval of
convergence is therefore 0 < x < 4, and the absolute values may be dropped,

ln x = ln 2 +
∞∑

n=0

(−1)n

(n + 1)2n+1
(x − 2)n+1 = ln 2 +

∞∑

n=1

(−1)n+1

n 2n
(x − 2)n.

19. Termwise integration of

1
x + 3

=
1

2 + (x + 1)
=

1
2[1 + (x + 1)/2]

=
1
2

∞∑

n=0

(
−x + 1

2

)n

=
∞∑

n=0

(−1)n

2n+1
(x + 1)n

gives ln |x + 3| =
∞∑

n=0

(−1)n

(n + 1)2n+1
(x + 1)n+1 + C . Setting x = −1 gives C = ln 2, and therefore

ln |x + 3| = ln 2 +
∞∑

n=0

(−1)n

(n + 1)2n+1
(x + 1)n+1. Since the radius of convergence of the geometric series is

2, this is also the radius of convergence for the series of the logarithm function. The open interval of
convergence is therefore −3 < x < 1, and the absolute values may be dropped,

ln (x + 3) = ln 2 +
∞∑

n=0

(−1)n

(n + 1)2n+1
(x + 1)n+1 = ln 2 +

∞∑

n=1

(−1)n+1

n 2n
(x + 1)n.

20.
1
x

=
1

4 + (x − 4)
=

1
4[1 + (x − 4)/4]

=
1
4

∞∑

n=0

(
−x − 4

4

)n

=
∞∑

n=0

(−1)n

4n+1
(x − 4)n, provided

∣∣∣∣−
x − 4

4

∣∣∣∣ < 1 =⇒ 0 < x < 8
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21. With the binomial expansion 10.33b,

1
(x + 2)3

=
1

8(1 + x/2)3
=

1
8

(
1 +

x

2

)−3

=
1
8

[
1 + (−3)

(x

2

)
+

(−3)(−4)
2!

(x

2

)2

+
(−3)(−4)(−5)

3!

(x

2

)3

+ · · ·
]

=
1
8

[
1 − 3x

2
+

3 · 4
23

x2 − 4 · 5
24

x3 +
5 · 6
25

x4 + · · ·
]

=
∞∑

n=0

(−1)n(n + 1)(n + 2)
2n+4

xn, valid for − 1 <
x

2
< 1 =⇒ −2 < x < 2.

22. With the binomial expansion 10.33b,

1
(2 − x)2

=
1

[−1 − (x − 3)]2
=

1
[1 + (x − 3)]2

= [1 + (x − 3)]−2

= 1 − 2(x − 3) +
(−2)(−3)

2!
(x − 3)2 +

(−2)(−3)(−4)
3!

(x − 3)3 + · · ·

=
∞∑

n=0

(−1)n(n + 1)(x − 3)n, provided − 1 < x − 3 < 1 =⇒ 2 < x < 4.

23. With the binomial expansion 10.33b,

1
(x + 3)2

=
1

[4 + (x − 1)]2
=

1
16[1 + (x − 1)/4]2

=
1
16

(
1 +

x − 1
4

)−2

=
1
16

[
1− 2

(
x − 1

4

)
+

(−2)(−3)
2!

(
x − 1

4

)2

+
(−2)(−3)(−4)

3!

(
x − 1

4

)3

+ · · ·

]

=
∞∑

n=0

(−1)n(n + 1)
4n+2

(x − 1)n, provided − 1 <
x − 1

4
< 1 =⇒ −3 < x < 5.

24.
1

x2 + 8x + 15
=

1
(x + 3)(x + 5)

=
1/2

x + 3
+

−1/2
x + 5

=
1/6

1 + x/3
− 1/10

1 + x/5

=
1
6

∞∑

n=0

(
−

x

3

)n

−
1
10

∞∑

n=0

(
−

x

5

)n

=
∞∑

n=0

(−1)n

2(3n+1)
xn +

∞∑

n=0

(−1)n+1

2(5n+1)
xn

=
∞∑

n=0

(−1)n

2

(
1

3n+1
− 1

5n+1

)
xn, valid for − 3 < x < 3.

25. Term-by-term integration of
1

1 + x2
= 1 − x2 + x4 − x6 + · · · gives

Tan−1x =
(

x − x3

3
+

x5

5
− · · ·

)
+ C.

Substitution of x = 0 gives C = 0, and therefore Tan−1x =
∞∑

n=0

(−1)n

2n + 1
x2n+1. The open interval of

convergence is −1 < x < 1.
26. With the binomial expansion 10.33b,

√
x + 3 =

√
3
√

1 + x/3 =
√

3
[
1 +

(
1
2

)(x

3

)
+

(1/2)(−1/2)
2!

(x

3

)2

+
(1/2)(−1/2)(−3/2)

3!

(x

3

)3

+ · · ·
]

=
√

3
[
1 +

x

6
−

1
22322!

x2 +
(1)(3)
23333!

x3 −
(1)(3)(5)
24344!

x4 + · · ·
]

=
√

3

[
1 +

x

6
− x2

72
+

∞∑

n=3

(−1)n+1[1 · 3 · 5 · · · (2n − 3)]
2n3nn!

xn

]
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=
√

3

[
1 +

x

6
− x2

72
+

∞∑

n=3

(−1)n+1[1 · 2 · 3 · 4 · · · (2n − 3)(2n − 2)]
[2 · 4 · 6 · · · (2n − 2)]6nn!

xn

]

=
√

3

[
1 +

x

6
− x2

72
+

∞∑

n=3

2(−1)n+1(2n − 2)!
12nn! (n − 1)!

xn

]

=
√

3 +
∞∑

n=1

2
√

3(−1)n+1(2n − 2)!
12nn! (n − 1)!

xn, valid for − 1 ≤
x

3
≤ 1 =⇒ |x| ≤ 3.

27. With the binomial expansion 10.33b,
√

x + 3 =
√

5 + (x − 2) =
√

5
√

1 + (x − 2)/5

=
√

5

[
1 +

1
2

(
x − 2

5

)
+

(1/2)(−1/2)
2!

(
x − 2

5

)2

+
(1/2)(−1/2)(−3/2)

3!

(
x − 2

5

)3

+ · · ·

]

=
√

5
[
1 +

1
10

(x − 2) − 1
1022!

(x − 2)2 +
1 · 3
1033!

(x − 2)3 + · · ·
]

=
√

5 +
√

5
10

(x − 2) +
∞∑

n=2

√
5(−1)n+1[1 · 3 · 5 · · · (2n − 3)]

10nn!
(x − 2)n

=
√

5 +
√

5
10

(x − 2) +
∞∑

n=2

√
5(−1)n+1[1 · 2 · 3 · · · (2n − 2)]
[2 · 4 · 6 · · · (2n − 2)]10nn!

(x − 2)n

=
√

5 +
∞∑

n=1

(−1)n+1(2n − 2)!
5n−1/222n−1n! (n − 1)!

(x − 2)n, valid for − 1 ≤ x − 2
5

≤ 1 =⇒ −3 ≤ x ≤ 7

28. With the binomial expansion 10.33b,

(1 − 2x)1/3 = [−1 − 2(x − 1)]1/3 = −[1 + 2(x − 1)]1/3

= −
{

1 +
2(x − 1)

3
+

(1/3)(−2/3)
2!

[2(x − 1)]2 +
(1/3)(−2/3)(−5/3)

3!
[2(x − 1)])3 + · · ·

}

= −1 − 2
3
(x − 1) +

222
322!

(x − 1)2 − 23(2 · 5)
333!

(x − 1)3 + · · ·

= −1 − 2
3
(x − 1) +

∞∑

n=2

(−1)n2n[2 · 5 · 8 · · · (3n − 4)]
3nn!

(x − 1)n,

= −1 +
∞∑

n=1

(−1)n−12n[(−1) · 2 · 5 · 8 · · · (3n − 4)]
3nn!

(x − 1)n,

valid for −1 ≤ 2(x − 1) ≤ 1 =⇒ 1/2 ≤ x ≤ 3/2.
29. With the binomial expansion 10.33b,

x2

(1 + x2)2
= x2(1 + x2)−2 = x2

[
1 + (−2)(x2) +

(−2)(−3)
2!

(x2)2 +
(−2)(−3)(−4)

3!
(x2)3 + · · ·

]

= x2 − 2x4 + 3x6 − 4x8 + · · ·

=
∞∑

n=1

n(−1)n+1x2n, valid for − 1 < x2 < 1 =⇒ −1 < x < 1

30. With the binomial expansion 10.33b,

x(1 − x)1/3 = x

[
1 +

(
1
3

)
(−x) +

(1/3)(−2/3)
2!

(−x)2 +
(1/3)(−2/3)(−5/3)

3!
(−x)3 + · · ·

]

= x − x2

3
− 2

322!
x3 − (2)(5)

333!
x4 − (2)(5)(8)

344!
x5 + · · ·
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= x − x2

3
−

∞∑

n=3

2 · 5 · 8 · · · (3n − 7)
3n−1(n − 1)!

xn

= x +
∞∑

n=2

(−1) · 2 · 5 · 8 · · · (3n − 7)
3n−1(n − 1)!

xn, valid for −1 ≤ x ≤ 1.

31. We extend the calculations in Example 10.24 to obtain another nonzero term. When we equate coeffi-
cients of x6, we obtain 0 = a6 − a4/2! + a2/4! − a0/6!, and this implies that a6 = 0. Coefficients of x7

give −1/7! = a7 − a5/2! + a3/4!− a1/6! =⇒ a7 = 17/315. Consequently,

tan x = x +
x3

3
+

2x5

15
+

17x7

315
+ · · · ,

and if we replace x by 2x, tan 2x = 2x +
8x3

3
+

64x5

15
+

2176x7

315
+ · · · .

32. If we set secx =
1

cosx
= a0 + a1x + a2x

2 + · · ·, then

1 =
(
a0 + a1x + a2x

2 + a3x
3 + · · ·

)(
1 − x2

2!
+

x4

4!
− x6

6!
+ · · ·

)
.

We now multiply the power series on the right and equate coefficients:
1: 1 = a0

x: 0 = a1

x2: 0 = −a0/2! + a2 =⇒ a2 = 1/2
x3: 0 = −a1/2! + a3 =⇒ a3 = 0
x4: 0 = a0/4!− a2/2! + a4 =⇒ a4 = 5/24
x5: 0 = a1/4!− a3/2! + a5 =⇒ a5 = 0
x6: 0 = −a0/6! + a2/4! − a4/2! + a6 =⇒ a6 = 61/720

Thus, sec x = 1 +
1
2
x2 +

5
24

x4 +
61
720

x6 + · · · . Long division could also be used.

33. ex sin x =
(

1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

)(
x − x3

3!
+

x5

5!
− · · ·

)

= x + x2 +
(

1
2!

− 1
3!

)
x3 +

(
1
3!

− 1
3!

)
x4 +

(
1
4!

− 1
2!3!

+
1
5!

)
x5 + · · ·

= x + x2 +
x3

3
−

x5

30
+ · · ·

34. cos2 x =
1
2
(1 + cos 2x) =

1
2

[
1 +

∞∑

n=0

(−1)n

(2n)!
(2x)2n

]
=

1
2

[
1 + 1 +

∞∑

n=1

(−1)n22n

(2n)!
x2n

]

= 1 +
∞∑

n=1

(−1)n22n−1

(2n)!
x2n, −∞ < x < ∞

35.
1

x6 − 3x3 − 4
=

1
(x3 − 4)(x3 + 1)

=
−1/5
1 + x3

+
1/5

x3 − 4
=

−1/5
1 + x3

−
1/20

1 − x3/4

= −1
5

∞∑

n=0

(−x3)n − 1
20

∞∑

n=0

(
x3

4

)n

=
∞∑

n=0

−
1
5

[
(−1)n +

1
4n+1

]
x3n, valid for − 1 < x < 1.
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36. The Maclaurin series for Sin−1(x2) can be obtained by replacing x by x2 in the series for Sin−1x in
Example 10.26:

Sin−1(x2) =
∞∑

n=0

(2n)!
(2n + 1)22n(n!)2

(x2)2n+1 =
∞∑

n=0

(2n)!
(2n + 1)22n(n!)2

x4n+2, |x| < 1.

37.
2x2 + 4

x2 + 4x + 3
= 2 − 8x + 2

(x + 3)(x + 1)
= 2 − 11

x + 3
+

3
x + 1

= 2 − 11/3
1 + x/3

+
3

1 + x

= 2 − 11
3

∞∑

n=0

(
−x

3

)n

+ 3
∞∑

n=0

(−x)n =
(

2 − 11
3

+ 3
)

+
∞∑

n=1

[
−11

3

(
−1

3

)n

+ 3(−1)n

]
xn

=
4
3

+
∞∑

n=1

(−1)n

(
3 − 11

3n+1

)
xn, valid for − 1 < x < 1.

38. If we integrate the series
1

1 − x
=

∞∑

n=0

xn, |x| < 1, we obtain − ln |1 − x| =
∞∑

n=0

1
n + 1

xn+1 + C. Sub-

stitution of x = 0 gives C = 0, and therefore ln |1 − x| =
∞∑

n=0

−1
n + 1

xn+1 =
∞∑

n=1

− 1
n

xn. The open

interval of convergence is −1 < x < 1 so that absolute values may be dropped. If we replace x by x/
√

2
and −x/

√
2, we find

f(x) = ln (1 + x/
√

2) − ln (1 − x/
√

2) =
∞∑

n=1

− 1
n

(
− x√

2

)n

−
∞∑

n=1

− 1
n

(
x√
2

)n

=
∞∑

n=1

[
(−1)n+1

n2n/2
+

1
n2n/2

]
xn =

∞∑

n=1

[
1 + (−1)n+1

n2n/2

]
xn.

When n is even the coefficient of xn is zero, and therefore

f(x) =
∞∑

n=0

2
(2n + 1)2(2n+1)/2

x2n+1 =
∞∑

n=0

√
2

(2n + 1)2n
x2n+1.

Since the added series both have open interval of convergence −
√

2 < x <
√

2, this is the open interval
of convergence for the combined series.

39. If
∑∞

n=0 an(x − c)n =
∑∞

n=0 bn(x − c)n, then
∑∞

n=0 (an − bn)(x − c)n = 0. The right side of this equa-
tion is the Maclaurin series for the function identically equal to zero, and as such, its coefficients must
all be zero; that is, an − bn = 0 for all n.

40. The right side of this equation is the Maclaurin series for the function identically equal to zero, and as
such, its coefficients must all be zero; that is, an = 0 for all n.

41.
∞∑

n=0

Pn(t) =
∞∑

n=0

1
n!

(
t

30

)n

e−t/30 = e−t/30
∞∑

n=0

1
n!

(
t

30

)n

= e−t/30(et/30) = 1 The sum represents the

probability that either nobody, or just one person, or two people, or three people, etc., drink from the
fountain. Since one of these situations must occur, the probability is one.

42. (a)
∞∑

n=1

np(1 − p)n−1 = p

∞∑

n=1

n(1 − p)n−1 If we differentiate the series
1

1 − x
=

∞∑

n=0

xn, |x| < 1, term-

by-term, we obtain
1

(1 − x)2
=

∞∑

n=0

nxn−1 =
∞∑

n=1

nxn−1, |x| < 1. We now substitute x = 1 − p into

this result,
1

[1 − (1 − p)]2
=

∞∑

n=1

n(1 − p)n−1. Multiplication by p gives
1
p

=
∞∑

n=1

np(1 − p)n−1.

(b) The probability of throwing a six is p = 1/6, and therefore
∞∑

n=1

np(1 − p)n−1 =
1

1/6
= 6.
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43.
2√
π

∫ x

0

e−t2 dt =
2√
π

∫ x

0

[ ∞∑

n=0

1
n!

(−t2)n

]
dt =

2√
π

∞∑

n=0

(−1)n

n!

∫ x

0

t2n dt

=
2√
π

∞∑

n=0

(−1)n

n!

{
t2n+1

2n + 1

}x

0

=
2√
π

∞∑

n=0

(−1)n

(2n + 1)n!
x2n+1

44. Integrating the Maclaurin series for cos (πt2/2) (see Example 10.21) term-by-term gives

C(x) =
∫ x

0

[ ∞∑

n=0

(−1)n

(2n)!

(
πt2

2

)2n
]

dt =
∞∑

n=0

(−1)n

(2n)!
π2n

22n

∫ x

0

t4n dt

=
∞∑

n=0

(−1)n

(2n)!
π2n

22n

{
t4n+1

4n + 1

}x

0

=
∞∑

n=0

(−1)nπ2n

(4n + 1)22n(2n)!
x4n+1,

valid for −∞ < x < ∞. A similar procedure leads to the Maclaurin series for S(x).
45. With the binomial expansion 10.33b,

x

(4 + 3x)2
=

x

16

(
1 +

3x

4

)−2

=
x

16

[
1 − 2

(
3x

4

)
+

(−2)(−3)
2!

(
3x

4

)2

+
(−2)(−3)(−4)

3!

(
3x

4

)3

+ · · ·

]

=
x

16

∞∑

n=0

(−1)n3n(n + 1)
4n

xn =
∞∑

n=0

(−1)n3n(n + 1)
4n+2

xn+1 =
∞∑

n=1

(−1)n+13n−1n

4n+1
xn.

But the coefficient of xn in the Maclaurin series is f (n)(0)/n!, and therefore

f (n)(0)
n!

=
(−1)n+13n−1n

4n+1
=⇒ f (n)(0) =

(−1)n+13n−1n n!
4n+1

.

46. The Maclaurin series for f(x) = xe−2x is

xe−2x = x

∞∑

n=0

1
n!

(−2x)n =
∞∑

n=0

(−1)n2n

n!
xn+1 =

∞∑

n=1

(−1)n+12n−1

(n − 1)!
xn.

But the coefficient of xn in the Maclaurin series is f (n)(0)/n!, and therefore

f (n)(0)
n!

=
(−1)n+12n−1

(n − 1)!
=⇒ f (n)(0) =

(−1)n+12n−1n!
(n − 1)!

= n(−1)n+12n−1.

47. The Taylor series for f(x) = 1/(3 + x) about x = 2 is

1
3 + x

=
1

5 + (x − 2)
=

1
5[1 + (x − 2)/5]

=
1
5

∞∑

n=0

(
−

x − 2
5

)n

=
∞∑

n=0

(−1)n

5n+1
(x − 2)n.

But the coefficient of (x − 2)n in the Taylor series is f (n)(2)/n!, and therefore

f (n)(2)
n!

=
(−1)n

5n+1
=⇒ f (n)(2) =

(−1)nn!
5n+1

.

48. The Taylor series for f(x) = xe−x about x = 2 is

xe−x = [(x − 2) + 2]e−(x−2)−2 = e−2[2 + (x − 2)]
∞∑

n=0

(−1)n

n!
(x − 2)n

= e−2

[ ∞∑

n=0

2(−1)n

n!
(x − 2)n +

∞∑

n=0

(−1)n

n!
(x − 2)n+1

]

= e−2

[ ∞∑

n=0

2(−1)n

n!
(x − 2)n +

∞∑

n=1

(−1)n+1

(n − 1)!
(x − 2)n

]

= e−2

[
2 +

∞∑

n=1

(−1)n(2 − n)
n!

(x − 2)n

]
.
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But the coefficient of (x − 2)n in the Taylor series is f (n)(2)/n!, and therefore

f (n)(2)
n!

=
(−1)n(2 − n)e−2

n!
=⇒ f (n)(2) =

(−1)n(2 − n)n!
e2n!

=
(n − 2)(−1)n+1

e2
.

49. Since the Maclaurin series for x2 sin 2x

x2 sin 2x = x2
∞∑

n=0

(−1)n

(2n + 1)!
(2x)2n+1 =

∞∑

n=0

(−1)n22n+1

(2n + 1)!
x2n+3

contains only odd powers of x, the even derivatives of x2 sin 2x must all be zero.

50. Since the Maclaurin series for e−x2
, namely, e−x2

=
∞∑

n=0

1
n!

(−x2)n =
∞∑

n=0

(−1)n

n!
x2n contains only

even powers of x, the odd derivatives of e−x2
must all be zero.

51. Using the definition of Jm(x) as the Maclaurin series in Exercise 38 of Section 10.4, we may write

2m Jm(x) − x Jm−1(x) = 2m
∞∑

n=0

(−1)n

22n+mn!(n + m)!
x2n+m − x

∞∑

n=0

(−1)n

22n+m−1n!(n + m − 1)!
x2n+m−1

=
∞∑

n=0

m(−1)n

22n+m−1n!(n + m)!
x2n+m −

∞∑

n=0

(−1)n

22n+m−1n!(n + m − 1)!
x2n+m

=
∞∑

n=0

(−1)n(m − n − m)
22n+m−1n! (n + m)!

x2n+m =
∞∑

n=1

(−1)n+1

22n+m−1(n − 1)! (n + m)!
x2n+m

=
∞∑

n=0

(−1)n

22n+m+1n! (n + m + 1)!
x2n+m+2 = x

∞∑

n=0

(−1)n

22n+m+1n! (n + m + 1)!
x2n+m+1

= x Jm+1(x).

52. Using the definition of Jm(x) as the Maclaurin series in Exercise 38 of Section 10.4, we may write

Jm−1(x) − Jm+1(x) =
∞∑

n=0

(−1)n

22n+m−1n!(n + m − 1)!
x2n+m−1 −

∞∑

n=0

(−1)n

22n+m+1n!(n + m + 1)!
x2n+m+1.

We lower n by 1 in the second summation, and separate out the first term in the first summation,

Jm−1(x) − Jm+1(x) =
1

2m−1(m − 1)!
xm−1 +

∞∑

n=1

(−1)n

22n+m−1n!(n + m − 1)!
x2n+m−1

+
∞∑

n=1

(−1)n

22n+m−1(n − 1)!(n + m)!
x2n+m−1

=
1

2m−1(m − 1)!
xm−1 +

∞∑

n=1

(−1)n

22n+m−1(n − 1)!(n + m − 1)!

(
1
n

+
1

n + m

)
x2n+m−1

=
1

2m−1(m − 1)!
xm−1 +

∞∑

n=1

(−1)n

22n+m−1(n − 1)!(n + m − 1)!

[
2n + m

n(n + m)

]
x2n+m−1

=
m

2m−1m!
xm−1 +

∞∑

n=1

(2n + m)(−1)n

22n+m−1n!(n + m)!
x2n+m−1

=
∞∑

n=0

(2n + m)(−1)n

22n+m−1n!(n + m)!
x2n+m−1.

Term-by-term differentiation of the series for Jm(x) gives J ′
m(x) =

∞∑

n=0

(2n + m)(−1)n

22n+mn!(n + m)!
x2n+m−1.

Hence, Jm−1(x) − Jm+1(x) = 2J ′
m(x).
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53. With the binomial expansion 10.33b,

1√
1 − 2µx + x2

= 1 − 1
2
(x2 − 2µx) +

(−1/2)(−3/2)
2!

(x2 − 2µx)2 +
(−1/2)(−3/2)(−5/2)

3!
(x2 − 2µx)3 + · · ·

= 1 +
1
2
(2µx − x2) +

3
8
(4µ2x2 − 4µx3 + x4) +

5
16

(8µ3x3 − 12µ2x4 + 6µx5 − x6) + · · ·

= 1 + (µ)x +
(
−1

2
+

3µ2

2

)
x2 +

(
−3µ

2
+

5µ3

2

)
x3 + · · · .

Thus, P0(µ) = 1, P1(µ) = µ, P2(µ) = (3µ2 − 1)/2, and P3(µ) = (5µ3 − 3µ)/2.

54. (a) If we substitute the Maclaurin series for ex into x = (ex − 1)
(

1 + B1x +
B2

2!
x2 + · · ·

)
,

x =
[(

1 + x +
x2

2!
+

x3

3!
+ · · ·

)
− 1
](

1 + B1x +
B2x

2

2!
+ · · ·

)

=
(

x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+ · · ·

)(
1 + B1x +

B2x
2

2!
+

B3x
3

3!
+

B4x
4

4!
+

B5x
5

5!
+ · · ·

)
.

When we multiply the series on the right and equate coefficients of powers of x left and right:
x: 1 = 1

x2: 0 =
1
2!

+ B1 =⇒ B1 = −1
2

x3: 0 =
1
3!

+
B1

2!
+

B2

2!
=⇒ B2 =

1
6

x4: 0 =
1
4!

+
B1

3!
+

B2

(2!)2
+

B3

3!
=⇒ B3 = 0

x5: 0 =
1
5!

+
B1

4!
+

B2

2!3!
+

B3

2!3!
+

B4

4!
=⇒ B4 = − 1

30

x6: 0 =
1
6!

+
B1

5!
+

B2

2!4!
+

B3

(3!)2
+

B4

2!4!
+

B5

5!
=⇒ B5 = 0

(b) Suppose we set f(x) =
x

ex − 1
− 1 − B1x =

x

ex − 1
− 1 +

x

2
=

2x − 2(ex − 1) + x(ex − 1)
2(ex − 1)

=
xex − 2ex + x + 2

2(ex − 1)
=

B2

2!
x2 +

B3

3!
x3 + · · · .

Since

f(−x) =
−x

e−x − 1
− 1 − x

2
=

xex

ex − 1
− 1 − x

2

=
2xex − 2(ex − 1) − x(ex − 1)

2(ex − 1)
=

xex − 2ex + x + 2
2(ex − 1)

= f(x),

f(x) is an even function. But the Maclaurin series for f(x) can represent an even function only if all
odd powers are absent. In other words, 0 = B3 = B5 = · · · .

55. ex(t−1/t)/2 =ext/2 e−x/(2t) =

[ ∞∑

n=0

1
n!

(
xt

2

)n
][ ∞∑

n=0

1
n!

(
− x

2t

)n
]

=

[ ∞∑

n=0

(x/2)n

n!
tn

][ ∞∑

n=0

(−x/2)n

n!

(
1
t

)n
]
.

When these series are multiplied together, the coefficient of tn is

(x/2)n

n!
+

(x/2)n+1

(n + 1)!
(−x/2)

1!
+

(x/2)n+2

(n + 2)!
(−x/2)2

2!
+ · · · =

∞∑

m=0

(x/2)n+m

(n + m)!
(−x/2)m

m!

=
∞∑

m=0

(−1)m

22m+nm! (n + m)!
x2m+n = Jn(x).
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1. The radius of convergence of the series is R = lim
n→∞

∣∣∣∣
n

n + 1

∣∣∣∣ = 1. If we set S(x) =
∞∑

n=1

nxn−1, then term-

by-term integration gives
∫

S(x) dx + C =
∞∑

n=1

xn =
x

1 − x
,

since the series is geometric. Differentiation now gives S(x) =
(1 − x)(1) − x(−1)

(1 − x)2
=

1
(1 − x)2

.

2. The radius of convergence of the series is R = lim
n→∞

∣∣∣∣
n(n − 1)
(n + 1)n

∣∣∣∣ = 1. If we set S(x) =
∞∑

n=2

n(n − 1)xn−2,

then term-by-term integration gives
∫

S(x) dx + C =
∞∑

n=2

nxn−1. A second integration leads to

∫ [∫
S(x) dx + C

]
dx + D =

∞∑

n=2

xn =
x2

1 − x
,

since the series is geometric. Differentiation now gives
∫

S(x) dx + C =
(1 − x)(2x) − x2(−1)

(1 − x)2
=

2x − x2

(1 − x)2
.

A second differentiation provides S(x),

S(x) =
(1 − x)2(2 − 2x) − (2x − x2)2(1 − x)(−1)

(1 − x)4
=

2
(1 − x)3

.

3. The radius of convergence of the series is R = lim
n→∞

∣∣∣∣
n + 1
n + 2

∣∣∣∣ = 1. If we set S(x) =
∞∑

n=1

(n + 1)xn−1, then

x S(x) =
∞∑

n=1

(n + 1)xn. Term-by-term integration gives

∫
x S(x) dx + C =

∞∑

n=1

xn+1 =
x2

1 − x
,

since the series is geometric. Differentiation now gives

x S(x) =
(1 − x)(2x) − x2(−1)

(1 − x)2
=

2x − x2

(1 − x)2
=⇒ S(x) =

2 − x

(1 − x)2
.

4. The radius of convergence of the series is R = lim
n→∞

∣∣∣∣
n2

(n + 1)2

∣∣∣∣ = 1. If we set S(x) =
∞∑

n=1

n2xn−1, then

term-by-term integration gives
∫

S(x) dx + C =
∞∑

n=1

nxn. When x 6= 0, we can divide by x,

1
x

∫
S(x) dx +

C

x
=

∞∑

n=1

nxn−1. Integration now gives,

∫ [
1
x

∫
S(x) dx

]
dx + C ln |x| + D =

∞∑

n=1

xn =
x

1 − x
.
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If we now differentiate,
1
x

∫
S(x) dx +

C

x
=

(1 − x)(1) − x(−1)
(1 − x)2

=
1

(1 − x)2
. Multiplication by x

and a further differentiation gives

S(x) =
d

dx

[
x

(1 − x)2

]
=

(1 − x)2(1) − x(2)(1 − x)(−1)
(1 − x)4

=
x + 1

(1 − x)3
.

Since the sum of the series at x = 0 is 1, and this is S(0), the formula S(x) = (x + 1)/(1 − x)3 can be
used for all x in |x| < 1.

5. If we divide the series into two parts,
∞∑

n=1

(n2 + 2n)xn =
∞∑

n=1

n2xn + 2
∞∑

n=1

nxn, the first series is x times

that in Exercise 4, and the second is x times that in Exercise 1. Hence,

∞∑

n=1

(n2 + 2n)xn =
x(x + 1)
(1 − x)3

+
2x

(1 − x)2
=

3x − x2

(1 − x)3
.

6. The radius of convergence of the series is R = lim
n→∞

∣∣∣∣
1/(n + 1)
1/(n + 2)

∣∣∣∣ = 1. If we set S(x) =
∞∑

n=0

1
n + 1

xn, then

x S(x) =
∞∑

n=0

1
n + 1

xn+1. Term-by-term differentiation gives
d

dx
[x S(x)] =

∞∑

n=0

xn =
1

1 − x
, since the

series is geometric. We now integrate,

x S(x) =
∫

1
1 − x

dx = − ln (1 − x) + C.

Substitution of x = 0 gives C = 0, and therefore S(x) = − 1
x

ln (1 − x). This is valid for −1 < x < 1,

but not at x = 0. It is interesting to note, however, that the limit of S(x) as x approaches zero is 1 and
this is the sum of the series at x = 0.

7. If we set y = x2, the series becomes
∞∑

n=0

(−1)n

2n + 1
x2n+1 = ±√

y

∞∑

n=0

(−1)n

2n + 1
yn. The radius of conver-

gence of this series is Ry = lim
n→∞

∣∣∣∣
(−1)n/(2n + 1)

(−1)n+1/(2n + 3)

∣∣∣∣ = 1. The radius of convergence of the original

series is therefore Rx = 1. If we set S(x) =
∞∑

n=0

(−1)n

2n + 1
x2n+1, then term-by-term differentiation gives

S′(x) =
∞∑

n=0

(−1)nx2n =
1

1 + x2
, since the series is geometric. Integration now gives S(x) = Tan−1x+C.

Since S(0) = 0, it follows that C = 0, and S(x) = Tan−1x.

8. If we set y = x2, the series becomes
∞∑

n=1

(−1)n

n
x2n =

∞∑

n=1

(−1)n

n
yn. The radius of convergence of this

series is Ry = lim
n→∞

∣∣∣∣
(−1)n/n

(−1)n+1/(n + 1)

∣∣∣∣ = 1. The radius of convergence of the original series is therefore

Rx = 1. If we set S(x) =
∞∑

n=1

(−1)n

n
x2n, then term-by-term differentiation gives

S′(x) =
∞∑

n=1

2(−1)nx2n−1 =
−2x

1 + x2
,

since the series is geometric. Integration now leads to S(x) = − ln (1 + x2) + C. Since S(0) = 0, it
follows that C = 0, and S(x) = − ln (1 + x2).
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9. If we set y = x2, the series becomes
∞∑

n=2

n3nx2n =
∞∑

n=2

n3nyn. The radius of convergence of this

series is Ry = lim
n→∞

∣∣∣∣
n3n

(n + 1)3n+1

∣∣∣∣ = 1/3. The radius of convergence of the original series is therefore

Rx = 1/
√

3. If we set S(x) =
∞∑

n=2

n3nx2n, then
S(x)

x
=

∞∑

n=2

n3nx2n−1, provided x 6= 0. Term-by-term

integration of this equation gives
∫

S(x)
x

dx =
∞∑

n=2

3n

2
x2n =

9x4/2
1 − 3x2

,

since the series is geometric. Differentiation now gives

S(x)
x

=
9
2

[
(1 − 3x2)(4x3) − x4(−6x)

(1 − 3x2)2

]
=

9(4x3 − 6x5)
2(1 − 3x2)2

=⇒ S(x) =
9x4(2 − 3x2)
(1 − 3x2)2

.

Since the sum of the series at x = 0 is 0, and this is S(0), the formula for S(x) can be used for all x in
|x| < 1/

√
3.

10. The radius of convergence of the series is R = lim
n→∞

∣∣∣∣
(n + 1)/(n + 2)
(n + 2)/(n + 3)

∣∣∣∣ = 1. If we set

S(x) =
∞∑

n=0

(
n + 1
n + 2

)
xn, and integrate,

∫
S(x) dx =

∞∑

n=0

1
n + 2

xn+1 + C. Multiplication by x gives

x

∫
S(x) dx =

∞∑

n=0

1
n + 2

xn+2 + Cx. Differentiation now gives

d

dx

[
x

∫
S(x) dx

]
=

∞∑

n=0

xn+1 + C =
x

1 − x
+ C,

since the series is geometric. Integration now yields

x

∫
S(x) dx =

∫
x

1 − x
dx + Cx + D = −x − ln |1 − x| + Cx + D.

If we set x = 0 in this equation we find that D = 0. When we drop absolute values and divide by x,
∫

S(x) dx = −1 − 1
x

ln (1 − x) + C, x 6= 0.

When we differentiate this equation, we obtain S(x) =
1
x2

ln (1 − x) +
1

x(1 − x)
. This formula can

only be used for values of x in the interval −1 < x < 1, but not x = 0. The sum at x = 0 is 1/2.

11. The radius of convergence of the series is R = lim
n→∞

∣∣∣∣
(n + 1)/n!

(n + 2)/(n + 1)!

∣∣∣∣ = ∞. If we set

S(x) =
∞∑

n=1

(
n + 1

n!

)
xn, and integrate,

∫
S(x) dx =

∞∑

n=1

xn+1

n!
+ C = x

∞∑

n=1

xn

n!
+ C = x(ex − 1) + C.

Differentiation now gives

S(x) = (ex − 1) + x(ex) = (x + 1)ex − 1.

12.
∞∑

n=0

(−1)n(2n + 1)
(2n + 1)!

x2n+1 = x

∞∑

n=0

(−1)n

(2n)!
x2n = x cosx
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13. If we set y = x2, the series becomes
∞∑

n=0

(−1)n(n + 2)
(2n)!

x2n = ±√
y

∞∑

n=0

(−1)n(n + 2)
(2n)!

yn. The radius

of convergence of this series is Ry = lim
n→∞

∣∣∣∣
(−1)n(n + 2)/(2n)!

(−1)n+1(n + 3)/(2n + 2)!

∣∣∣∣ = ∞. The radius of convergence

of the original series is therefore Rx = ∞ also. If we set S(x) =
∞∑

n=0

(−1)n(n + 2)
(2n)!

x2n, and multiply by

x3, x3S(x) =
∞∑

n=0

(−1)n(n + 2)
(2n)!

x2n+3. Integration now gives

∫
x3S(x) dx =

∞∑

n=0

(−1)n(n + 2)
(2n)!(2n + 4)

x2n+4 + C =
x4

2

∞∑

n=0

(−1)n

(2n)!
x2n + C =

x4

2
cosx + C.

We now differentiate to get

x3S(x) = 2x3 cosx −
x4

2
sinx =⇒ S(x) = 2 cosx −

x

2
sinx.

14. If we set y = x2, the series becomes
∞∑

n=1

(2n + 3)2n

n!
x2n =

∞∑

n=1

(2n + 3)2n

n!
yn. The radius of con-

vergence of this series is Ry = lim
n→∞

∣∣∣∣
(2n + 3)2n/n!

(2n + 5)2n+1/(n + 1)!

∣∣∣∣ = ∞. The radius of convergence of the

original series is therefore Rx = ∞ also. If we set S(x) =
∞∑

n=1

(2n + 3)2n

n!
x2n, and multiply by x2,

x2S(x) =
∞∑

n=1

(2n + 3)2n

n!
x2n+2. Integration now gives

∫
x2S(x) dx =

∞∑

n=1

2n

n!
x2n+3 + C = x3

∞∑

n=1

1
n!

(2x2)n + C = x3(e2x2
− 1) + C.

We now differentiate to get

x2S(x) = 3x2(e2x2
− 1) + x3(4xe2x2

) =⇒ S(x) = (4x2 + 3)e2x2
− 3.

15. If we set y = x2, the series becomes
∞∑

n=0

(−1)n+1(2n − 1)
(2n)!

x2n+1 = ±√
y

∞∑

n=0

(−1)n+1(2n − 1)
(2n)!

yn. The

radius of convergence of this series is Ry = lim
n→∞

∣∣∣∣
(−1)n+1(2n − 1)/(2n)!

(−1)n+2(2n + 1)/(2n + 2)!

∣∣∣∣ = ∞. The radius of con-

vergence of the original series is therefore Rx = ∞ also. If we set S(x) =
∞∑

n=0

(−1)n+1(2n − 1)
(2n)!

x2n+1,

and divide by x3,
S(x)
x3

=
∞∑

n=0

(−1)n+1(2n − 1)
(2n)!

x2n−2, x 6= 0. Integration now gives

∫
S(x)
x3

dx =
∞∑

n=0

(−1)n+1

(2n)!
x2n−1 + C = −

1
x

∞∑

n=0

(−1)n

(2n)!
x2n + C = −

1
x

cosx + C.

We now differentiate to get

S(x)
x3

=
1
x2

cosx +
1
x

sin x =⇒ S(x) = x cosx + x2 sin x.

This gives the sum of the series at x = 0 also.
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1. Taylor’s remainder formula for ex and c = 0 gives ex = 1 + x +
x2

2
+

x3

6
+ R3, where

R3 =
d4

dx4
ex

|x=z3

x4

4!
= ez3

x4

24
, and 0 < z3 < x. Since x ≤ 0.01, we can say that

R3 < ex x4

24
≤ e0.01 (0.01)4

24
= 4.2 × 10−10.

2. Taylor’s remainder formula for ex and c = 0 gives ex = 1 + x +
x2

2
+

x3

6
+ R3, where

R3 =
d4

dx4
ex

|x=z3

x4

4!
= ez3

x4

24
, and 0 < z3 < x. Since x < 0.01, we can say that

R3 < ex x4

24
< e0.01 (0.01)4

24
= 4.2 × 10−10.

3. Taylor’s remainder formula for ex and c = 0 gives ex = 1 + x +
x2

2
+

x3

6
+ R3, where

R3 =
d4

dx4
ex

|x=z3

x4

4!
= ez3

x4

24
, and x < z3 < 0. Since −0.01 ≤ x < 0, we can say that

|R3| < e0 |x|4

24
≤

| − 0.01|4

24
= 4.2× 10−10.

4. According to Exercise 2, a maximum error on 0 ≤ x ≤ 0.01 is 4.2 × 10−10. For −0.01 ≤ x < 0,

R3 = ez3
x4

24
where x < z3 < 0. Since x ≥ −0.01, it follows that

|R3| < e0 |x|4

24
≤ | − 0.01|4

24
< 4.2× 10−10.

5. Taylor’s remainder formula for sin x and c = 0 gives sin x = x − x3

3!
+ R4, where

R4 =
d5

dx5
sin x|x=z4

x5

5!
= (cos z4)

x5

120
, and 0 < z4 < x. Since 0 ≤ x ≤ 1, we can say that

R4 < (1)
x5

120
≤ (1)5

120
=

1
120

.

6. Taylor’s remainder formula for cosx and c = 0 gives cosx = 1 −
x2

2!
+

x4

4!
+ R5, where

R5 =
d6

dx6
cosx|x=z5

x6

6!
= −(cos z5)

x6

6!
, and z5 is between 0 and x. Since |x| ≤ 0.1, we can say that

|R5| < (1)
|x|6

6!
≤

(0.1)6

6!
< 1.4 × 10−9.

7. The first four derivatives of f(x) = ln (1 − x) are f ′(x) = −1/(1 − x), f ′′(x) = −1/(1 − x)2, f ′′′(x) =
−2/(1 − x)3, and f ′′′′(x) = −6/(1 − x)4. Taylor’s remainder formula for ln (1 − x) and c = 0 gives

ln (1 − x) = −x − x2/2− x3/3 + R3(x), where R3(x) = f ′′′′(z3)
x4

4!
=

−x4

4(1 − z3)4
, and 0 < z3 < x. Since

0 ≤ x ≤ 0.01, we can say that

|R3| <
x4

4(1− x)4
≤ (0.01)4

4(1 − 0.01)4
< 2.7× 10−9.
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8. The first four derivatives of f(x) = 1/(1 − x)3 are f ′(x) = 3/(1 − x)4, f ′′(x) = 12/(1 − x)5, f ′′′(x) =
60/(1 − x)6, and f ′′′′(x) = 360/(1 − x)7. Taylor’s remainder formula for 1/(1 − x)3 and c = 0 gives

1
(1 − x)3

= 1 + 3x + 6x2 + 10x3 + R3(x), where R3(x) = f ′′′′(z3)
x4

4!
=

15x4

(1 − z3)7
, and z3 is between 0

and x. Since |x| < 0.2, we can say that

|R3| <
15|x|4

(1 − 0.2)7
<

15(0.2)4

(1 − 0.2)7
< 0.115.

9. Taylor’s remainder formula for sin 3x and c = 0 gives sin 3x = 3x − 9x3

2
+

81x5

40
+ R6, where

R6 =
d7

dx7
sin 3x|x=z6

x7

7!
= −37(cos 3z6)

x7

7!
, and z6 is between 0 and x. Since |x| < π/100, we can say

that

|R6| < 37(1)
|x|7

7!
< 37 (π/100)7

7!
< 1.4× 10−11.

10. The first five derivatives of f(x) = ln x are f ′(x) = 1/x, f ′′(x) = −1/x2, f ′′′(x) = 2/x3, f ′′′′(x) = −6/x4,
and f ′′′′′(x) = 24/x5. Taylor’s remainder formula with c = 1 gives

ln x = (x − 1) − 1
2
(x − 1)2 +

1
3
(x − 1)3 − 1

4
(x − 1)4 + R4,

where R4 = f (5)(z4)
(x − 1)5

5!
=

24
z5
4

(x − 1)5

5!
=

(x − 1)5

5z5
4

and z4 is between 1 and x. Since 1/2 ≤ x ≤ 3/2,

we can say that

|R4| <
|x − 1|5

5(1/2)5
≤ (1/2)5

5(1/2)5
= 0.2.

11. Taylor’s remainder formula for sin x gives

sin x = x −
x3

3!
+

x5

5!
− · · · +

dn

dxn
(sin x)|x=0

xn

n!
+ Rn(0, x)

where Rn(0, x) =
dn+1(sin x)

dxn+1 |x=zn

xn+1

(n + 1)!
and zn is between 0 and x. Therefore

sin x

x
= 1 − x2

3!
+

x4

5!
− · · · + 1

x
Rn(0, x).

When we take definite integrals,∫ 1

0

sin x

x
dx =

∫ 1

0

[
1 − x2

3!
+

x4

5!
− · · · + 1

x
Rn(0, x)

]
dx

=
{

x −
x3

3 · 3!
+

x5

5 · 5!
− · · ·

}1

0

+
∫ 1

0

1
x

Rn(0, x) dx,

= 1 − 1
3 · 3!

+
1

5 · 5!
− · · · +

∫ 1

0

1
x

Rn(0, x) dx.

Now,
∣∣∣∣
∫ 1

0

1
x

Rn(0, x) dx

∣∣∣∣ ≤
∫ 1

0

∣∣∣∣
1
x

dn+1(sin x)
dxn+1 |x=zn

xn+1

(n + 1)!

∣∣∣∣ dx. Since
∣∣∣∣
dn+1(sin x)

dxn+1 |x=zn

∣∣∣∣ ≤ 1, it follows

that
∣∣∣∣
∫ 1

0

1
x

Rn(0, x) dx

∣∣∣∣ ≤
∫ 1

0

xn

(n + 1)!
dx =

{
xn+1

(n + 1)(n + 1)!

}1

0

=
1

(n + 1)(n + 1)!
.

When n = 6, this is less than 0.000 029. Hence, if we approximate the integral with the first three terms,

namely, 1 − 1
3 · 3!

+
1

5 · 5!
= 0.946 111, then we can say that
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0.946 111− 0.000 029 <

∫ 1

0

sinx

x
dx < 0.946 111 + 0.000 029;

that is, 0.946 082 <

∫ 1

0

sin x

x
dx < 0.946 140. To three decimals, then, the value of the integral is 0.946.

12. If we set u = x2 and du = 2x dx, then
∫ 1/2

0

cos (x2) dx =
1
2

∫ 1/4

0

cosu√
u

du. Taylor’s remainder formula

for cosu gives

cosu = 1− u2

2!
+

u4

4!
− · · · + dn(cosu)

dun |u=0

un

n!
+ Rn(0, u),

where Rn(0, u) =
dn+1(cosu)

dun+1 |u=zn

un+1

(n + 1)!
. Consequently,

∫ 1/2

0

cos (x2) dx =
1
2

∫ 1/4

0

1√
u

[
1 −

u2

2!
+

u4

4!
− · · · + Rn(0, u)

]
du

=
1
2

∫ 1/4

0

[
1√
u
− u3/2

2!
+

u7/2

4!
− · · · + 1√

u
Rn(0, u)

]
du

=
1
2

{
2
√

u − 2u5/2

5 · 2!
+

2u9/2

9 · 4!
− · · ·

}1/4

0

+
1
2

∫ 1/4

0

1√
u

Rn(0, u) du

=
1
2
− 1

5 · 25 · 2!
+

1
9 · 29 · 4!

− · · · + 1
2

∫ 1/4

0

1√
u

Rn(0, u) du.

Now,

∣∣∣∣∣
1
2

∫ 1/4

0

1√
u

Rn(0, u) du

∣∣∣∣∣ ≤
1
2

∫ 1/4

0

1√
u
|Rn(0, u)| du ≤ 1

2

∫ 1/4

0

1√
u

un+1

(n + 1)!
du

=
1
2

∫ 1/4

0

un+1/2

(n + 1)!
du =

1
2(n + 1)!

{
un+3/2

n + 3/2

}1/4

0

=
1

(2n + 3)(n + 1)!4n+3/2
.

When n = 2, this is less than 1.9× 10−4. Hence, if we approximate the integral with the first two terms,

namely,
1
2
− 1

5 · 25 · 2!
=

159
320

, then we can say that

159
320

− 0.000 19 <

∫ 1/2

0

cos (x2) dx <
159
320

+ 0.000 19,

that is, 0.496 685 <

∫ 1/2

0

cos (x2) dx < 0.497 065. To three decimals, the value of the integral is 0.497.

13. Taylor’s remainder formula for sin x gives

sin x = x − x3

3!
+

x5

5!
− · · · + dn

dxn
(sin x)|x=0

xn

n!
+ Rn(0, x)

where Rn(0, x) =
dn+1(sin x)

dxn+1 |x=zn

xn+1

(n + 1)!
and zn is between 0 and x. Therefore

x11 sin x = x12 − x14

3!
+

x16

5!
− · · · + x11Rn(0, x).

When we take definite integrals,
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∫ 1

−1

x11 sin x dx =
∫ 1

−1

[
x12 − x14

3!
+

x16

5!
− · · · + x11Rn(0, x)

]
dx

=
{

x13

13
− x15

15 · 3!
+

x17

17 · 5!
− · · ·

}1

−1

+
∫ 1

−1

x11Rn(0, x) dx,

=
2
13

− 2
15 · 3!

+
2

17 · 5!
− · · · +

∫ 1

−1

x11Rn(0, x) dx.

Now,
∣∣∣∣
∫ 1

−1

x11Rn(0, x) dx

∣∣∣∣ ≤
∫ 1

−1

∣∣∣∣x11 dn+1(sin x)
dxn+1 |x=zn

xn+1

(n + 1)!

∣∣∣∣ dx ≤
∫ 1

−1

|xn+12|
(n + 1)!

dx

=
2

(n + 1)!

∫ 1

0

xn+12 dx =
2

(n + 1)!

{
xn+13

n + 13

}1

0

=
2

(n + 13)(n + 1)!
.

When n = 6, this is less than 2.1 × 10−5. Hence, if we approximate the integral with the first three

terms, namely,
2
13

−
2

15 · 3!
+

2
17 · 5!

= 0.132 604, then we can say that

0.132 604− 0.000 021 <

∫ 1

−1

x11 sin x dx < 0.132 604 + 0.000 021,

that is, 0.132 583 <

∫ 1

−1

x11 sin x dx < 0.132 625. To three decimals, the value of the integral is 0.133.

14. If we set w = x2 and dw = 2x dx, then
∫ 0.3

0

e−x2
dx =

1
2

∫ 0.09

0

e−w

√
w

dw. Taylor’s remainder formula

applied to e−w gives

e−w = 1 − w +
w2

2!
− w3

3!
+ · · · + (−1)nwn

n!
+ Rn(0, w)

where Rn(0, w) =
dn+1

dwn+1
(e−w)|w=wn

wn+1

(n + 1)!
=

(−1)n+1e−wnwn+1

(n + 1)!
. Consequently,

∫ 0.3

0

e−x2
dx =

1
2

∫ 0.09

0

1√
w

[
1 − w +

w2

2!
− w3

3!
+ · · · + (−1)nwn

n!
+ Rn(0, w)

]
dw

=
1
2

∫ 0.09

0

[
1√
w

−
√

w +
w3/2

2!
− w5/2

3!
+ · · · + (−1)nwn−1/2

n!
+

1√
w

Rn(0, w)
]

dw

=
1
2

{
2
√

w − 2w3/2

3
+

2w5/2

5 · 2!
− 2w7/2

7 · 3!
+ · · · + 2(−1)nwn+1/2

(2n + 1)n!

}0.09

0

+
1
2

∫ 0.09

0

Rn(0, w)√
w

dw

=
√

0.09 − (0.09)3/2

3
+

(0.09)5/2

5 · 2!
− (0.09)7/2

7 · 3!
+ · · · + (−1)n(0.09)n+1/2

(2n + 1)n!
+

1
2

∫ 0.09

0

Rn(0, w)√
w

dw.

Now,

1
2

∣∣∣∣
∫ 0.09

0

Rn(0, w)√
w

dw

∣∣∣∣ ≤
1
2

∫ 0.09

0

1√
w

∣∣∣∣
(−1)n+1e−wnwn+1

(n + 1)!

∣∣∣∣ dw =
1

2(n + 1)!

∫ 0.09

0

e−wnwn+1/2dw.

Since 0 < wn < w < 0.09, we can say e−wn ≤ 1. Thus,

1
2

∣∣∣∣
∫ 0.09

0

Rn(0, w)√
w

dw

∣∣∣∣ ≤
1

2(n + 1)!

{
2wn+3/2

2n + 3

}0.09

0

=
(0.09)n+3/2

(2n + 3)(n + 1)!
.
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When n = 2, this is less than 3.0 × 10−6. Hence, if we approximate the integral with the first three

terms, namely,
√

0.09− (0.09)3/2

3
+

(0.09)5/2

5 · 2!
= 0.291 243, then we can say that

0.291 243− 0.000 003 <

∫ 0.3

0

e−x2
dx < 0.291 243 + 0.000 003,

that is, 0.291 240 <

∫ 0.3

0

e−x2
dx < 0.291 246. To three decimals, the value of the integral is 0.291.

15. Using the result of Example 10.24, lim
x→0

tanx

x
= lim

x→0

(
1 +

x2

3
+

2x4

15
+ · · ·

)
= 1.

16. lim
x→0

1 − cosx

x2
= lim

x→0

1
x2

[
1 −

(
1 − x2

2!
+

x4

4!
− · · ·

)]
= lim

x→0

(
1
2!

− x2

4!
+ · · ·

)
=

1
2

17. lim
x→0

(1 − cosx)2

3x4
= lim

x→0

1
3x4

[
1 −

(
1 −

x2

2!
+

x4

4!
− · · ·

)]2
= lim

x→0

1
3x4

(
x2

2!
−

x4

4!
+ · · ·

)2

= lim
x→0

1
3x4

(
x4

4
− x6

24
+ · · ·

)
= lim

x→0

(
1
12

− x2

72
+ · · ·

)
=

1
12

.

18. lim
x→0

√
1 + x − 1

x
= lim

x→0

1
x

[(
1 +

x

2
− (1/2)(−1/2)

2!
x2 + · · ·

)
− 1
]

= lim
x→0

[
1
2

+
x

8
+ · · ·

]
=

1
2

19. lim
x→∞

x sin
(

1
x

)
= lim

x→∞
x

(
1
x
− 1

3!x3
+

1
5!x5

− · · ·
)

= lim
x→∞

(
1 − 1

3!x2
+

1
5!x4

− · · ·
)

= 1

20.
ex + e−x

ex − e−x
=

1 + e−2x

1 − e−2x
=

1 +
[
1 − 2x +

(−2x)2

2!
+

(−2x)3

3!
+ · · ·

]

1 −
[
1 − 2x +

(−2x)2

2!
+

(−2x)3

3!
+ · · ·

] =
2 − 2x + 2x2 −

4x3

3
+ · · ·

2x − 2x2 +
4x3

3
+ · · ·

Long division gives
ex + e−x

ex − e−x
=

1
x

+
x

3
+ · · · .

Thus, lim
x→0

(
ex + e−x

ex − e−x
− 1

x

)
= lim

x→0

[(
1
x

+
x

3
+ · · ·

)
− 1

x

]
= 0.

21. Taylor’s remainder formula for sin (x/3) gives

sin (x/3) =
x

3
− x3

33 · 3!
+

x5

35 · 5!
− x7

37 · 7!
+ · · · + dn

dxn
[sin (x/3)]|x=0

xn

n!
+ Rn(0, x)

where Rn(0, x) =
dn+1[sin (x/3)]

dxn+1 |x=zn

xn+1

(n + 1)!
and zn is between 0 and x. Since the (n+1)th derivative

of sin (x/3) is ±3−n−1 sin (x/3) or ±3−n−1 cos (x/3), and |x| ≤ 4, it follows that

|Rn(0, x)| ≤ |x|n+1

3n+1(n + 1)!
≤ 4n+1

3n+1(n + 1)!
.

The smallest integer for which this is less than 10−3 is n = 7. Thus, the series should be truncated after
x7/(37 · 7!).

22. We set u = x3 and consider the function f(u) = 1/
√

1 + u on the interval 0 < u < 1/8. Since the nth

derivative of f(u) is f (n)(u) =
(−1)n[1 · 3 · 5 · · · (2n − 1)]

2n(1 + u)n+1/2
, Taylor’s remainder formula gives

f(u) = 1− u

2
+

3u2

8
− 5u3

16
+ · · · + (−1)n[1 · 3 · 5 · · · (2n − 1)]

2n n!
un + Rn(0, u),

where Rn(0, u) =
f (n+1)(zn)
(n + 1)!

un+1, and 0 < zn < u. Since 0 < u < 1/8, we can say that
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|Rn(0, u)| =
1 · 3 · 5 · · · (2n + 1)

2n+1|1 + zn|n+3/2(n + 1)!
|u|n+1 <

1 · 3 · 5 · · · (2n + 1)
2n+1|1 + 0|n+3/2(n + 1)!

|u|n+1

<
1 · 3 · 5 · · · (2n + 1)

2n+1(n + 1)!

(
1
8

)n+1

=
1 · 3 · 5 · · · (2n + 1)

24n+4(n + 1)!
.

The smallest integer for which this is less than 10−4 is n = 3. Thus, we should approximate 1/
√

1 + u
with 1 − u/2 + 3u2/8 − 5u3/16, or approximate 1/

√
1 + x3 with

1 − x3

2
+

3x6

8
− 5x9

16
.

23. Since the nth derivative of f(x) = ln (1 − x) is f (n)(x) = −(n− 1)!/(1−x)n, Taylor’s remainder formula
gives

f(x) = −x − x2

2
− x3

3
− x4

4
− · · · − xn

n
+ Rn(0, x),

where Rn(0, x) =
f (n+1)(zn)
(n + 1)!

xn+1 =
−n! xn+1

(n + 1)!(1 − zn)n+1
=

−xn+1

(n + 1)(1 − zn)n+1
, and zn is between 0 and

x. Since |x| < 1/3, we can say that

|Rn(0, x)| =
|x|n+1

(n + 1)|1 − zn|n+1
<

|x|n+1

(n + 1)|1 − 1/3|n+1
<

(1/3)n+1

(n + 1)(2/3)n+1
=

1
(n + 1)2n+1

.

The smallest integer for which this is less than 10−2 is n = 4. Thus, we should approximate ln (1 − x)
with −x − x2/2 − x3/3 − x4/4.

24. Taylor’s remainder formula for cos2 x = (1 + cos 2x)/2 gives

cos2 x =
1
2
(1 + cos 2x) =

1
2

[
1 +

(
1 − 22x2

2!
+

24x4

4!
− · · · + f (n)(0)

n!
xn + Rn(0, x)

)]

= 1 − x2 +
x4

3
− · · · + f (n)(0)

2n!
xn +

1
2
Rn(0, x),

where Rn(0, x) =
f (n+1)(zn)
(n + 1)!

xn+1 and zn is between 0 and x. Since the (n + 1)th derivative of f(x) is

±2n+1 sin 2x or ±2n+1 cos 2x, and |x| ≤ 0.1, it follows that

1
2
|Rn(0, x)| ≤ 2n+1|x|n+1

2(n + 1)!
<

2n

(n + 1)!10n+1
.

The smallest integer for which this is less than 10−3 is n = 2. Thus, the function should be approximated
by 1 − x2.

25. If we substitute y = f(x) =
∑∞

n=0 anxn into the differential equation,

0 = −4 +
∞∑

n=0

3anxn +
∞∑

n=0

nanxn−1 = −4 +
∞∑

n=0

3anxn +
∞∑

n=0

(n + 1)an+1x
n

= (−4 + 3a0 + a1) +
∞∑

n=1

[3an + (n + 1)an+1]xn.

When we equate coefficients to zero:

−4 + 3a0 + a1 = 0 and 3an + (n + 1)an+1 = 0, n ≥ 1.

The first implies that a1 = 4 − 3a0 and the second gives the recursive formula an+1 =
−3an

(n + 1)
, n ≥ 1.

Iteration leads to
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a2 = −3a1

2
=

−3(4 − 3a0)
2

, a3 = −3a2

3
=

32(4 − 3a0)
3!

, a4 = −3a3

4
= −33(4 − 3a0)

4!
, · · · .

Thus,

y = f(x) = a0 + (4 − 3a0)x −
3(4 − 3a0)

2!
x2 +

32(4 − 3a0)
3!

x3 + · · ·

= a0 +
(4 − 3a0)

3

[
3x − (3x)2

2!
+

(3x)3

3!
+ · · ·

]

= a0 +
(4 − 3a0)

3
(1 − e−3x) =

4
3

+
(3a0 − 4)

3
e−3x.

26. If we substitute y = f(x) =
∑∞

n=0 anxn into the differential equation,

0 =
∞∑

n=0

n(n − 1)anxn−2 +
∞∑

n=0

nanxn−1 =
∞∑

n=1

(n + 1)nan+1x
n−1 +

∞∑

n=1

nanxn−1

=
∞∑

n=1

[(n + 1)nan+1 + nan]xn−1.

When we equate coefficients to zero:

(n + 1)nan+1 + nan = 0 =⇒ an+1 = − an

n + 1
, n ≥ 1.

This recursive definition implies that

a2 = −a1

2
, a3 = −a2

3
=

a1

3!
, a4 = −a3

4
= −a1

4!
, · · · .

Thus, y = f(x) = a0 + a1

(
x − x2

2!
+

x3

3!
− x4

4!
+ · · ·

)
= a0 + a1

∞∑

n=1

(−1)n+1

n!
xn

= a0 − a1(e−x − 1) = (a0 + a1) − a1e
−x.

27. If we substitute y = f(x) =
∑∞

n=0 anxn into the differential equation,

0 = −3x −
∞∑

n=0

4anxn +
∞∑

n=0

nanxn = −4a0 + (−3− 4a1 + a1)x +
∞∑

n=2

(n − 4)anxn.

When we equate coefficients to zero:

a0 = 0, −3− 3a1 = 0, (n − 4)an = 0, n ≥ 2.

These imply that a1 = −1, a4 is undetermined, and all other coefficients vanish. Thus, y = f(x) =
−x + a4x

4.

28. If we substitute y = f(x) =
∑∞

n=0 anxn into the differential equation,

0 = 4x

∞∑

n=0

n(n − 1)anxn−2 + 2
∞∑

n=0

nanxn−1 +
∞∑

n=0

anxn

=
∞∑

n=0

4n(n− 1)anxn−1 +
∞∑

n=0

2nanxn−1 +
∞∑

n=0

anxn

=
∞∑

n=2

4n(n− 1)anxn−1 +
∞∑

n=1

2nanxn−1 +
∞∑

n=1

an−1x
n−1

= (2a1 + a0) +
∞∑

n=2

[(4n2 − 4n + 2n)an + an−1]xn−1.
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We now equate coefficients of powers of x to zero. From the coefficient of x0 we obtain 2a1 + a0 = 0
which implies that a1 = −a0/2. From the remaining coefficients, we obtain

(4n2 − 2n)an + an−1 = 0 =⇒ an =
−an−1

2n(2n− 1)
, n ≥ 2.

When we iterate this recursive definition:

a2 =
−a1

4 · 3
=

a0

4!
, a3 =

−a2

6 · 5
= −a0

6!
, · · ·

The solution is therefore y = f(x) = a0

(
1 − x

2
+

x2

4!
− x3

6!
+ · · ·

)
= a0

∞∑

n=0

(−1)n

(2n)!
xn.

29. If we substitute y = f(x) =
∑∞

n=0 anxn into the differential equation,

0 =
∞∑

n=0

n(n − 1)anxn−2 +
∞∑

n=0

anxn =
∞∑

n=0

(n + 2)(n + 1)an+2x
n +

∞∑

n=0

anxn

=
∞∑

n=0

[(n + 2)(n + 1)an+2 + an]xn.

When we equate coefficients of powers of x to zero, we obtain the recursive formula

an+2 =
−an

(n + 2)(n + 1)
, n ≥ 0.

Iteration gives

a2 = −
a0

2!
, a4 =

a0

4!
, a6 = −

a0

6!
, . . . , and a3 = −

a1

3!
, a5 =

a1

5!
, a7 = −

a1

7!
, . . . .

The solution is therefore

y = f(x) = a0

(
1 − x2

2!
+

x4

4!
− · · ·

)
+ a1

(
x − x3

3!
+

x5

5!
− · · ·

)
= a0 cosx + a1 sin x.

30. If we substitute y = f(x) =
∑∞

n=0 anxn into the differential equation,

0 = x

∞∑

n=0

n(n − 1)anxn−2 +
∞∑

n=0

anxn =
∞∑

n=0

n(n − 1)anxn−1 +
∞∑

n=0

anxn

=
∞∑

n=2

n(n − 1)anxn−1 +
∞∑

n=1

an−1x
n−1 = a0 +

∞∑

n=2

[n(n − 1)an + an−1]xn−1.

We now equate coefficients of powers of x to zero. From the coefficient of x0 we obtain a0 = 0. From
the remaining coefficients, we obtain

n(n − 1)an + an−1 = 0 =⇒ an =
−an−1

n(n − 1)
, n ≥ 2.

When we iterate this recursive definition:

a2 =
−a1

2 · 1
, a3 =

−a2

3 · 2
=

a1

3! 2!
, a4 =

−a3

4 · 3
=

−a1

4! 3!
, · · · .

The solution is therefore

y = f(x) = a1

(
x − x2

2 · 1
+

x3

3! · 2!
− x4

4! · 3!
+ · · ·

)
= a1

∞∑

n=1

(−1)n+1

n!(n − 1)!
xn.
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31. According to Exercise 23, Taylor’s remainder formula for ln (1 − x) is

ln (1 − x) = −x − x2

2
− · · · + Rn(0, x), where Rn(0, x) =

−xn+1

(n + 1)(1 − zn)n+1
,

and zn is between 0 and x. The maximum error when only the first term is used is R1(0, x) =
−x2

2(1 − z1)2
.

If we set x = 0.000 000 000 1, then z1 < 0.000 000 000 1, and we can say that

|R1(0, 0.000 000 000 1)| < (0.000 000 000 1)2

2(0.999 999 999 9)2
< 3.4 × 10−21.

Hence, ln (0.999 999 999 9) = −10−10, and this is definitely accurate to more than 15 decimal places.

32. K = c2(m − m0) = c2m0

(
1√

1 − v2/c2
− 1

)

= c2m0

{[
1 − 1

2

(
−v2

c2

)
+

(−1/2)(−3/2)
2!

(
−v2

c2

)2

+
(−1/2)(−3/2)(−5/2)

3!

(
−v2

c2

)3

+ · · ·

]
− 1

}

= c2m0

{
v2

2c2
+

3
8

v4

c4
+

5
16

v6

c6
+ · · ·

}
=

1
2
m0v

2 + m0c
2

(
3
8

v4

c4
+

5
16

v6

c6
+ · · ·

)

33. Using the binomial expansion,

P0

P
= 1 +

(
k

k − 1

)(
k − 1

2

)
M2 + · · · = 1 +

kM2

2
+ · · · .

34. When we expand Ps/P0 with the binomial expansion,

Ps

P0
= 1 +

(
k

k − 1

)(
k − 1

2

)
M2

0 +
1
2

(
k

k − 1

)(
k

k − 1
− 1
)(

k − 1
2

)2

M4
0

+
1
3!

(
k

k − 1

)(
k

k − 1
− 1
)(

k

k − 1
− 2
)(

k − 1
2

)3

M6
0 + · · ·

= 1 +
k

2
M2

0 +
k

8
M4

0 +
k(2 − k)

48
M6

0 + · · ·

= 1 +
1
2
M2

0

(
ρ0c

2
0

P0

)
+

1
8
M4

0

(
ρ0c

2
0

P0

)
+

1
48

M6
0 (2 − k)

(
ρ0c

2
0

P0

)
+ · · · .

Multiplication by P0, and replacement of M2
0 by V 2

0 /c2
0 in the last three terms gives

Ps = P0 +
1
2
ρ0c

2
0

(
V 2

0

c2
0

)
+

1
8
ρ0c

2
0

(
V 2

0

c2
0

)
M2

0 +
1
48

(2 − k)ρ0c
2
0

(
V 2

0

c2
0

)
M4

0 + · · ·

= P0 +
1
2
ρ0V

2
0 +

1
8
ρ0V

2
0 M2

0 +
1
48

(2 − k)ρ0V
2
0 M4

0 + · · ·

= P0 +
1
2
ρ0V

2
0

[
1 +

M2
0

4
+
(

2 − k

24

)
M4

0 + · · ·
]

.

35. (a) Using formula 9.3, the length of the ellipse is four times that in the first quadrant,

L = 4
∫ π/2

0

√
(−a sin t)2 + (b cos t)2 dt = 4b

∫ π/2

0

√
a2

b2
sin2 t + (1 − sin2 t) dt = 4b

∫ π/2

0

√
1 − k2 sin2 t dt,

where k2 = 1 − a2/b2.
(b) If we expand the integrand with the binomial expansion 10.33b, and integrate term-by-term,
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L = 4b

∫ π/2

0

[
1 +

1
2
(−k2 sin2 t) +

(1/2)(−1/2)
2

(−k2 sin2 t)2 + · · ·
]

dt

= 4b

∫ π/2

0

[
1 − k2

2

(
1 − cos 2t

2

)
− k4

8

(
1 − cos 2t

2

)2

+ · · ·

]
dt

= 4b

∫ π/2

0

[
1 − k2

4
(1 − cos 2t) − k4

32

(
1 − 2 cos 2t +

1 + cos 4t

2

)
+ · · ·

]
dt

= 4b

{
t − k2

4

(
t − sin 2t

2

)
− k4

32

(
3t

2
− sin 2t +

sin 4t

8

)
+ · · ·

}π/2

0

= 4b

[
π

2
− k2

4

(π

2

)
− k4

32

(
3π

4

)
+ · · ·

]

= 2πb

(
1 −

k2

4
−

3k4

64
+ · · ·

)
.

36. (a) If we substitute e−β2/(4αx) =
∞∑

n=0

1
n!

(
−

β2

4αx

)n

, we obtain

W (α, β) =
∫ ∞

1

1
x

e−αx
∞∑

n=0

1
n!

(
− β2

4αx

)n

dx =
∞∑

n=0

1
n!

(
−β2

4α

)n ∫ ∞

1

e−αx

xn+1
dx =

∞∑

n=0

(−1)nβ2n

4nαnn!
En+1(α).

(b) We use integration by parts with u = e−αx and dv =
1

xn+1
dx,

En+1(α) =
∫ ∞

1

e−αx

xn+1
dx =

{
−e−αx

nxn

}∞

1

−
∫ ∞

1

− 1
nxn

(−α)e−αx dx =
e−α

n
− α

n

∫ ∞

1

e−αx

xn
dx

=
1
n

[e−α − αEn(α)].

37. If we substitute the Maclaurin series for ech/(λkT ),

Ψ(λ) =
8πchλ−5

(
1 +

ch

λkT
+

c2h2

2λ2k2T 2
+ · · ·

)
− 1

=
8πch

λ5

(
ch

λkT
+

c2h2

2λ2k2T 2
+ · · ·

) =
8πch

ch

kT
λ4 +

c2h2

2k2T 2
λ3 + · · ·

.

If we long divide the denominator into the numerator, the result is

Ψ(λ) =
8πkT

λ4
+ terms in λ−5, λ−6, etc..

Thus, for large λ, Ψ(λ) can be approximated by 8πkT/λ4.

38. (a) We write E =
q

4πε0x
2

(
1 − d

2x

)2 −
q

4πε0x
2

(
1 +

d

2x

)2 =
q

4πε0x2

[(
1 −

d

2x

)−2

−
(

1 +
d

2x

)−2
]
.

(b) If we expand each term with the binomial expansion 10.33b,

E =
q

4πε0x2

{[
1 − 2

(
− d

2x

)
+ · · ·

]
−
[
1 − 2

(
d

2x

)
+ · · ·

]}
.

When d is very much less than x, we omit higher order terms in d/x, and write

E ≈ q

4πε0x2

(
1 +

d

x
− 1 +

d

x

)
=

qd

2πε0x3
.
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39. The cross-sectional area of the liquid is the area of the sector less the area of the triangle above it,

A =
1
2
R2θ − 2

(
1
2

)(
R sin

θ

2

)(
R cos

θ

2

)
=

R2

2
(θ − sin θ).

Since d = 2R sin
θ

2
and h = R − R cos

θ

2
,

hd = 2R sin
θ

2

(
R − R cos

θ

2

)
= R2

(
2 sin

θ

2
− sin θ

)
.

The required ratio is

A

hd
=

R2

2
(θ − sin θ)

R2

(
2 sin

θ

2
− sin θ

) =
θ − sin θ

2
(

2 sin
θ

2
− sin θ

) .

If we expand the sine functions in their Maclaurin series

A

hd
=

θ −
(

θ − θ3

3!
+

θ5

5!
− · · ·

)

2
[
2
(

θ

2
−

(θ/2)3

3!
+

(θ/2)5

5!
− · · ·

)
−
(

θ −
θ3

3!
+

θ5

5!
− · · ·

)]

=

θ3

3!
− θ5

5!
+ · · ·

θ3

4
− θ5

64
+ · · ·

(and by long division)

=
2
3

+
θ2

120
+ · · · .

For small θ, we can use the approximation
A

hd
≈ 2

3
+

θ2

120
.

EXERCISES 10.8

1. True If a sequence satisfies 10.35a, then it satisfies 10.35b; that is, every increasing sequence is non-
decreasing.

2. False The sequence {n} is increasing but has no upper bound.
3. True The first term of an increasing sequence is a lower bound.
4. False The sequence {−n} is decreasing but has no lower bound.
5. False The sequence {n} is increasing with lower bound 1, but it does not have a limit.
6. True An increasing sequence has a lower bound. If it also has an upper bound, then it has a limit

according to Theorem 10.7.
7. False The sequence {(−1)n} does not converge, but its terms are all ±1.
8. True For a sequence to be increasing and decreasing, its terms would have to satisfy cn+1 > cn and

cn+1 < cn for all n. This is impossible.
9. True The sequence {1} is an example.

10. True This is part of the corollary to Theorem 10.7.
11. False The sequence {(−1)n/n} is bounded and has limit 0, but it is not monotonic.
12. False The sequence {(−1)n/n} is bounded, not monotonic, and it has limit 0.


