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CHAPTER 10

EXERCISES 10.1

This sequence has limit 0. 2. This sequence diverges.
This sequence has limit 3. 4. This sequence has limit 0.
This sequence diverges. 6. This sequence has limit 0.

This sequence diverges.

This sequence has limit nh_)rr;o P —— = nh—{r;o m =

This sequence has limit 0. 10. This sequence has limit /2.
This sequence has limit 0. 12. This sequence diverges.
This sequence has limit 2 (since all terms are equal to 2).

This sequence has limit 0.
n+1 . 1+1/n 1

This sequence has limit nh_)rr;o o 13 = lim >ta/n 3

2 3 2+ 3
nt = lim +/n_

This sequence has limit lim

n—oo N2 — n—>oon—5/n_
24+5n—4 1+5/n—4/n?
This sequence has limit nan;O % = lim % =1.
This sequence has limit 0. 19. This sequence has limit 0.
1

This sequence has limit nh_)n;o T1/n /nTan_ln = g

2" —1 3 1
The general term is . 22. The general term is n—2|— .

n
1 1 1+ (=1)"+t
The general term is (_1)n+1n(n7+)' 24. The general term is L
vn+1 2

(2n— 1)

1 .
The limit of the sequence {Inn/\/n} as n — oo is equal to the limit of the function Inz/\/z as z — oo,
provided the limit of the function exists. When we use L’Hopital’s rule on the limit of the function,

The general term is V2 sin

. Inn 5 Inz . 1/x 2

m — = Im — = lim ———— = lIm — =
The limit of the sequence {(n® + 1)/e"} as n — oo is equal to the limit of the function (2% + 1)/e®
as x — 00, provided the limit of the function exists. When we use L’Hopital’s rule on the limit of the
function,

0.

Con41 | 322 . b6z . 6
lim = lim = lim — = lim — = lim — =0.
n—oo en rz—oo e¥ r—oo €T z—o0 ¥ r—o0 €T

The limit of the sequence {nsin(4/n)} as n — oo is equal to the limit of the function xsin (4/z) as
x — 00, provided the limit of the function exists. When we use L’Hopital’s rule,

lim 7 sin <f> = lim zsin (f) i Sy @ cos W)

n—oo n T—00 € z—00 1/:6 T—00 —1/.%'2
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The limit of the sequence {[(n+5)/(n+3)]"} as n — oo is equal to the limit of the function [(z+5)/(z+
3)]* as & — oo, provided the limit of the function exists. We set L equal to the limit of the function,
take logarithms, and use L’Hopital’s rule, (w + 5)

1 -
. z+3

InL =In| lim z+5 = lim zIn z+5 = lim
x+3 {(m+3)—(m+5)]
2 2
~ fim 25 (z+3) Cim 22

Thus, L = €2, and this is also the limit of the sequence.

Certainly the sequence diverges; terms get arbitrarily large for large n. On the other hand, as n increases,

n—oo

the difference between terms approaches lim [Inn —1In(n+1)] = lim In ( j_ 1) =0.
n—o0 n

(a) The first ten terms are  2,3,5,7,11,13,17,19,23,29. (b) No one has developed a formula for all primes.
The figure indicates that with initial

approximation z; = 1, the sequence defined

by Newton’s iterative procedure has a limit ¥

near —1/2. Tteration of 6

22 + 3z, + 1

=1
e ’ 2x, +3

Tn4+1 = Tpn —

leads to

.IQ:O, $3:—1/3,

x4 = —0.381, x5 = —0.381 966,

x¢ = —0.38196601, =7 = —0.38196601. .
Since f(—0.38196595) = 1.4 x 10~7 and -1 B 1 X
f(—0.381966 05) = —8.7 x 1078, we can
say that to seven decimals x = —0.381 966 0.
The figure indicates that with initial
approximation z; = —1, the sequence defined
by Newton’s iterative procedure has a limit
near —1/2. Tteration of

z2 + 3z, + 1

xrp = —1,
2z, +3

Tnt+1l = Tp —
leads to

.IQ:O, $3:_1/35

x4 = —0.381, x5 = —0.381 966,

xg = —0.38196601, x7 = —0.38196601. X
Since f(—0.38196595) = 1.4 x 10~7 and
F(—0.381966 05) = —8.7 x 1078, we can
say that to seven decimals x = —0.381 966 0.
The figure indicates that with initial
approximation x; = —1.5, the sequence defined
by Newton’s iterative procedure does not have
a limit. This is because x1 = —1.5is a
critical point of the function. 3r

=

X3 | %2 1
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The figure indicates that with initial approximation x; =

procedure has a limit near —3. Iteration of

EXERCISES 10.1

—3, the sequence defined by Newton’s iterative

x2 + 3z, + 1 g
T = —3, xn+1:xn—72$n+3 Al
leads to
T9 = —2.667, r3 = —2.6191, s
x4 = —2.6180345, rs = —2.618 03399,

T = —2.618 033 99.

Since f(—2.61803405) = 1.4 x 10~7 and
£(—2.61803395) = —8.7 x 10~%, we can

say that to seven decimals z = —2.618 034 0.

xzv ’

The figure indicates that with initial approximation x; = 4, the sequence defined by Newton’s iterative

procedure has a limit near 3. Iteration of

3 — 22+, —22
T e = e e 1
leads to
x9 = 3.268, x3 = 3.0609,
x4 = 3.0448, x5 = 3.044 723 15,

re = 3.044 723 15.

Since f(3.04472305) =

—2.2x 107% and

£(3.04472315) = 3.5 x 1078, we can say
that to seven decimals x = 3.044 723 1.

y

20

_/3xz

-20

The figure indicates that with initial approximation x; = 2, the sequence defined by Newton’s iterative
procedure has a limit near 3. Iteration of

xr1 = 27 Tn+l = Tp —
leads to
xoy = 3.778,
x4 = 3.0515,

re = 3.044 723 15,

3 — 12 + 3, — 22

322 — 2z, + 1
23 = 3.187,
25 = 3.044 740,

r7 = 3.044 723 15.

Since £(3.04472305) = —2.2 x 1075 and
£(3.04472315) = 3.5 x 1078, we can say
that to seven decimals x = 3.044 723 1.

¥

20

X
Xy X3

-20

The figure indicates that with initial aproximation x; = 2, the sequence defined by Newton’s iterative

procedure has a limit near 1. Iteration of

5 — 3z, +1
T =2, xn+1:xn—m
gives
xo = 1.649, x3 = 1.406,
x4 = 1.268, x5 = 1.220,
xg = 1.215, x7 = 1.214 65,
xg =1.21464804, x9=1.21464804.
Since f(1.21464795) = —7.3 x 10~7 and

f(1.21464805) = 5.8 x 1078, we can say
that to seven decimals x = 1.214 648 0.

<

10

X4 X3 X 2
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39. The figure indicates that the sequence defined by Newton’s iterative procedure has a limit. Iteration of

40.

41.

42.

5 — 3z, +1
1 =1, xn+1=xn—m
gives
T9 = 1.5, rs = 1.317,
x4 = 1.233, x5 = 1.2154,
zg = 1.214 649, r7 = 1.214648 04,

rg = 1.214 648 04.

Since f(1.21464795) = —7.3 x 1077 and
f(1.21464805) = 5.8 x 1078, we can say
that to seven decimals x = 1.214 648 0.

y

201

101

X1

IR 2 x

The figure indicates that with initial approximation xz; = 0, the sequence defined by Newton’s iterative

procedure has a limit near 0.3. Iteration of

x5 — 3z, +1

x1 =0, xn+1:xn—m
gives

x9 =1/3, r3 = 0.3347,

rq4 =0.33473414, x5 =0.33473414.

Since £(0.33473405) = 2.7 x 107 and
£(0.33473415) = —2.4 x 1078, we can
say that to seven decimals x = 0.334734 1.

AN

y

X X2 1/2

The figure indicates that with initial approximation 1 = 4/5, the sequence defined by Newton’s iterative

procedure has a limit near 0.3. Iteration of

5
x1 =4/5, Tpy1 =Ty — %
gives
29 = —0.326, 23 = 0.345,
z4 = 0.33472, w5 = 0.334 734 14,

re = 0.334 734 14.

Since f(0.33473405) = 2.7 x 10~7 and
£(0.33473415) = —2.4 x 1078, we can
say that to seven decimals x = 0.334734 1.

y

X

The figure indicates that with initial approximation x; = 0.85, the sequence defined by Newton’s iterative

procedure has a limit near —1.5. Iteration of

5
21 =085, Tpi1 =Ty — %
gives
sy = —1.987, w3 = —1.667,
vy = —1.474, s = —1.399,
w6 = —1.380, w7 = —1.388 79206,

rg = —1.38879198, 9= —1.388791098.

Since f(—1.38879195) =5.4 x 10~7 and
f(—1.38879205) = —1.0 x 1075, we can
say that to seven decimals z = —1.388 792 0.

X oxox K\

‘

-2

-1 x

204




43.

44.

45.

46.

47.

48.

49.

562 EXERCISES 10.1

The figure indicates that with initial approximation x; = —2, the sequence defined by Newton’s iterative
procedure has a limit near —1.5. Iteration of
5 — 3w, + 1
- T i Xa/\y L/
gives I ) o
xo = —1.675, xg = —1.478,
ry = —1.4004, rs = —1.3890,
26— —1.388792,  x7— —1.38879198, lor
xg = —1.388 791 98.
Since f(—1.38879195) = 5.4 x 1077 and 20k
f(—1.38879205) = —1.0 x 1075, we can

say that to seven decimals x = —1.388 792 0.

1
Tteration of x1 =2, 1,41 =2+ — gives
Tn

2y = 2.5, w3 = 2.4, 24 = 241667, x5=241379, 6= 2.41429,
@7 = 241420, 1g = 241422, wo — 241421, x50 = 2.41421.
Since f(2.41415) = —1.8 x 10~% and f(2.41425) = 1.0 x 10~*, it follows that to 4 decimals, z = 2.4142.

1
Tteration of zy = —1, a,41 = —E(If’l + 3) gives

2o =—1/3, x3=—04938, x4=—04799, x5=—0.4816, x5=—0.48138, a7 =—0.48141.

Since f(—0.48135) = 3.7 x 10~* and f(—0.48145) = —3.0 x 107, it follows that to 4 decimals, x =
—0.4814.

1
Tteration of 1 =0, x,411 = m(zi + 20) gives

22 =1/6, x3=0.16667, x4 =0.16667.
Since f(0.16665) = 2.8 x 1072 and f(0.166 75) = —9.2 x 1073, it follows that to 4 decimals, z = 0.1667.

222 4+ 3z, — 1
Tteration of x1 =3, @py1 = % gives
:L.n
Zo = 2889,  x3=29186, w4 —291049, x5 =2.91270,

26 = 2.91210, x7 =2.91226, w5 = 2.91222.
Since f(2.91215) = —8.5x 10~* and £(2.91225) = 2.2 x 1074, the root is = 2.9122 to 4 decimal places.
Iteration of 1 =0, x,41 = %(1 + 22)1/3 gives

20 = 1/2, 25 = 0.5386, x4 = 0.5443, x5 = 0.54517,

x¢ = 0.54531, 7 =0.54533, x5 = 0.54533.

Since f(0.54525) = —4.9 x 10~% and f(0.54535) = 1.2 x 1074, it follows that to 4 decimals, z = 0.5453.
622 — 1z, + 7
gy

To = 3.4286, w3 = 3.3872, x4 —=3.3626, x5 = 3.3478, 1z = 3.3388,
x7 =3.33334, x5 =3.33000, x9=3.32796, x10=3.32671, 11 =3.32594,
T1o = 3.32547, w13 = 3.32518, x4 = 3.32500, x5 = 3.32489, x5 = 3.324 82,
T17 = 3.32478, x18 =3.32476, z19=3.32474.

With f(z) = 23 —622+112—7, we calculate that £(3.32465) = —2.9x 10~ % and f(3.32475) = 1.4 x 10~
The root is therefore x = 3.3247 to 4 decimals.

With zy = 3.5, and x4 =

, iteration gives



50.

51.

52.

53.

54.

55.

EXERCISES 10.1 563

rh — 322 +1

With z; =0, and x,, 41 = , iteration gives

3
zo=1/3, x5 = 0.226, x4 = 0.283, x5 = 0.255, z6 = 0.270,
z7 =0.262, x5 = 0.266, 29 = 0.2642, z10 = 0.2652, 11 = 0.2647,

12 = 0.2649, 13 = 0.264 80, T14 = 0.264 85, 15 = 0.264 83, 16 — 0.264 84.

With f(z) = 2*—322 -3z +1, we calculate that £(0.26475) = 3.9 x 10~% and f(0.264 85) = —6.6 x 10~°.
The root is therefore x = 0.2648 to 4 decimals.

2 _ g3 A
With 21 = 0.5 and a1 = 20 50“’"1 —

2o = 0.6194, 25 = 0.68009, 24 = 0.7170, x5 =0.7397, x¢ = 0.7544,
z7 = 0.7641, zg = 0.7707, 29 = 0.7751, @19 =0.7782, z11 = 0.7803,
212 = 0.7817, 13 =0.7827, 14 = 0.7834, 215 = 0.7839, x16 = 0.7842,
217 = 0.7844, 13 = 0.7846, 10 = 0.7847, 90 = 0.7848, 21 = 0.784 83,
Tos = 0.78485, w03 = 0.784 86.

With f(x) = 2* 4+ 423 — 5022 + 1002 — 50, we calculate that f(0.78485) = —1.2x 1072 and £(0.78495) =
1.9 x 1073, Thus to 4 decimals, x = 0.7849.

With z; = 0.75, and z,41 = 4/1 — sin® Tp = \/ €082 Ty, = COS Ty, iteration gives
ro = 0.732, x3=0.744, x4 = 0.736, rs = 0.741, =z = 0.738,
r7 = 0.740, x5 =0.7385, x9 = 0.7395.

With f(z) = sinx — 1+ 22, we calculate that £(0.73905) = —8.7 x 1075 and f(0.73915) = 1.6 x 10~%.
The root is therefore z = 0.7391 to 4 decimals.

By cross-multiplying, (1 4+ 2*)secx = 2, and therefore the equation can be rearranged into the form
x = (2cosz — 1)Y/%. With 1 = 0.5 and 2,11 = (2cosx, — 1)%/4, iteration gives

xo = 0.932, x3 = 0.662, x4 = 0.872, x5 = 0.732, x¢ = 0.836,

x7 = 0.764, xg = 0.816, x9 = 0.780, x10 = 0.806, x11 = 0.788,

x12 = 0.800, x13 = 0.792, 14 = 0.798, x15 = 0.793, x16 = 0.797,

x17 = 0.7941, 215 =0.7962, 19 =0.7947, x99 = 0.7958, 297 = 0.7950,

Too = 0.7956, x93 =0.7951, o4 =0.7955, x95 = 0.7952, 296 = 0.7954,

o7 = 0.7953.

With f(z) = secx—2(1+2%) 71, we calculate that £(0.79525) = —2.6x10~% and f(0.79535) = 9.2x1075.
To 4 decimals then, x = 0.7953.

ewn + 6_171
10
2y = 0.226, w3 = 0.205, w4 = 0.2042, w5 —0.20418, = 0.20418.

, iteration gives

With z; = 0.5, and 2,41 = , iteration gives

With f(z) = e* + e~ — 10x, we calculate that f(0.20415) = 3.2 x 10~* and f(0.204 25) = —6.4 x 10~%.

The root is therefore x = 0.2042 to 4 decimals.

it — 152, + 2
4a3 — 15

ro =—0.09, z3=0.1333, x4 =0.1333544, x5 =0.1333544.

(a) Tteration of 1 = 1, Tpy1 = @y — gives

With f(z) = 2* —152+2, we calculate that £(0.1333535) = 1.4x107° and f(0.1333545) = —1.2x1076.
The root is therefore x = 0.133 354 to 6 decimals.
(b) Iteration gives

o =02, z3=0.13344, x4 =0.13335447, x5 = 0.13335442.

This leads to the same root as in part (a).
(c) Tteration of the sequence in part (a) beginning with z; = 2.5 gives
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To = 2.425, x3 =2.4201, =z3=2.4200619, x4 =2.4200619.

Since f(2.4200615) = —1.5 x 1075 and f(2.4200625) = 2.7 x 107>, the root is x = 2.420 062.
(d) Tteration beginning with z1 = 2 gives

o =12, x3=0.2716, x4 =0.133696, x5 =0.133355.
The sequence is converging to the root in part (a). Beginning with 27 = 3, we obtain zo = 5.5 and
x3 = 61.1. The sequence is diverging.
(a) di =2(0.99)(20) = 40(0.99) m
dy = 2(0.99)[(0.99)(20)] = 40(0.99)% m
ds = 2(0.99)[(20)(0.99)2] = 40(0.99)* m
The pattern emerging is d,, = 40(0.99)™ m.

(b) When an object falls from rest under gravity, the distance that it falls as a function of time ¢ is given
by d = 4.905t2. Consequently, the time to fall from peak height between n'" and (n + 1) bounces is
given by d,,/2 = 4.905t2. When this equation is solved for ¢, the result is t = /d,,/9.81, and therefore

tn = 2¢/d,, /981 = 2,/20(0.99)"/9.81 = (0.99)"/2 s,

4
Vv0.981
The dog reaches the farmer for the first time 2/3 km from the farmhouse. When the dog returns to the
farmhouse (travelling 2/3 km), the farmer moves to a distance 1/3 km from the farmhouse. The dog
then runs (2/3)(1/3) = 2/9 km in reaching the farmer for the second time. Thus, d; =2/3+2/9=38/9
km. When the dog returns to the farmhouse for the second time, the farmer moves to a distance 1/9
km from the farmhouse. The dog then runs (2/3)(1/9) = 2/27 km in reaching the farmer for the third
time. Thus, da = 2/9 + 2/27 = 8/27 km. The pattern emerging is d,, = 8/3"*! km.

Second First
0 Mee;tmg . Me?tmg
Farmhouse
«— 29 —
1/3 >
< 2/3 >

1

Since each of the 12 straight line segments in the middle figure has length P/9,

12P 4P
Pp=—=—.
I
Since each of the 48 straight line segments in the right figure has length P/27,
48P  4%P
Po=—=—.
2T 32
P 43P 4" p
The next perimeter is P; = 4(48)8—1 =55 The pattern emerging is P, = n The limit of P, as

n — oo does not exist.
(a) Since y(3) = 11.8 and y(4) = —3.0, the solution is between 3 and 4. To find it more accurately we
use
1181(1 — e~ tn/19) — 98.1¢,,
118.1e~ /10 — 98.1 '

Tteration gives to = 3.8334 and t3 = 3.833 2. Since y(3.825) = 0.14 and y(3.835) = —0.03, it follows that
to 2 decimals ¢ = 3.83 s.

t, = 3.8, tn+1 = tn
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(b) If air resistance is ignored, the acceleration of the stone is a = dv/dt = —9.81. Antidifferentiation
gives v(t) = —9.81t + C. Since v(0) = 20, it follows that C' = 20, and v(t) = dy/dt = —9.81¢ + 20.
Antidifferentiation now gives y(t) = —4.905t2 + 20t + D. Since y(0) = 0, we find that D = 0, and the
height of the stone is y(t) = —4.905¢% + 20t. When we set 0 = y = —4.905t2 + 20t, the positive solution
is 4.08 s.

The figure shows graphs of y = tanz and y / /
y=(e*—e*)/(e® + e ®) =tanhz for z > 0.

They intersect at + = 0 and values near 4 and 7. /

We use Newton’s iterative procedure

tan x,, — tanh z,,

Tnt+l = Tp — D)
sec? x,, — sech“z,,

with 21 = 4 to locate the smaller root.
Tteration gives xo = 3.932 25, 3 = 3.926 63,

xq4 = 3.926 60, x5 = 3.926 60. When we divide this by 20x, the result is 0.0625. A similar procedure
gives the next natural frequency 0.1125.

Since the area of an equilateral triangle with sides of length [ is /312/4, the area of the first triangle in

V3 (P\® 3P?

E i is — (=) =
xercise 58 is 1\ 3 36
the area in the first figure, and therefore

SR Y G W

. The middle figure adds three triangles each of area v/3(P/9)2/4 to

Ay

36 4 81 36 3-36

The right figure adds twelve triangles each of area v/3(P/27)?/4 to the middle figure, and therefore

12v3 <£)2_ V3P2 N V3P2 +4\/§P2

Ay = A .
2=t 97 36 3-36 ' 33-36

The next figure in the sequence would add 48 triangles each of area v/3(P/81)2/4, and therefore

48V/3 (5)2 _ V3PP VPP AVBP 4232

Az = Ay +

4 81 36 3-36 33 .36 35.36
3P? 1 4 42 n-l
The pattern emerging is A, = \/?:6 (1—1—5—1—?—1—%—1—---4—%)-

The next two terms are 1113213211, 31131211131221. Reason as follows: The second term is 11 because
there is one 1 in the first term; the third term is 21 because the second term has two 1’s; the fourth term
is 1211 because the third term has one 2 followed by one 1; the fifth term is 111221 because the fourth
term is one 1, followed by one 2, followed by two 1’s; etc.

Plots of the sequences are shown below.

(a) (b)

Cy An
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The plot of the seven-point averager is shown
to the right. 4,

0.5

-1 -2
An explicit formula for this FIR is F,, = :L_ 1 +2 (n ) — (n ) When we substitute n =
n

n n—1
3,...,12, we obtain the first 10 terms,

127 30" 607 105" 168’ 252" 360" 495’ 660’ 858
An explicit formula for this FIR is

Fu= o (3) - e (M) + e ()~ ()

When we substitute n =4, ...,13, we obtain the first 10 terms,

—0.9712, —0.4196, —0.2461, —0.1593, —0.1059, —0.0693, —0.0430, —0.0237, —0.0096, 0.0002.

(a) The height of the curve y = g(z) at the
point A with z-coordinate z1 is y = g(z1). y
If we proceed horizontally to the line y = z,

y=x
the coordinates of the point B on the line

are (g(x1),g(x1)). But the second term r=g()
in the sequence established by the method B(g(x).g(x) A, g(x)

of successive substitutions is zo = g(z1).
Hence the z-coordinate of B is 5. The b
height of the curve y = g(z) at C is y = g(z2). Clog(xr)
The point D has coordinates (g(z2), g(22)),

and hence, the z-coordinate of D is x3 = g(x2).
Continuation leads to the interpretation of the X3 X, X,
{zy} as shown in the figure.

(b) (©)

y=g(x)

y=g(x)

]\

X X4 X5 X3 X x

X X X3y

(d) It appears that the slope of y = g(z) near the required root dictates whether the sequence converges.
For slopes near zero (figures in (a) and (b)), the sequence converges, but for large slopes (figure in (c)),
the sequence diverges.

()
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@ X2 X1 X
If we apply the mean value theorem (Theorem ‘mean value theorem’) to g(z) on the interval between
a and z71,

g9(1) = g(a) +¢'(c)(z1 — a)
where ¢ is between « and x;. Since o = g(«), 2 = g(x1), and |¢'(c)| < a, we may write that
ry=a+g (@@ —-a) = |e2—al=lg(c)llz1 —al <alrr —al.

What this means is that x5 is closer to « than z1. If we repeat this procedure for z3 = g(x2) on the
interval between o and x5, we obtain

lzs — a| < alze — a| < a®|z — al.
Continuation of this process gives |z, — a| < a" !|z; — a|. It now follows that

lim |z, —a| < lim a" Yoy —a|=0 = lim z, =«
n—oo

n—oo n—oo
e _ f(zn) _
Newton’s iterative procedure defines the sequence x,41 =z, — )’ If we define F(x) = = —
Tn

f(x)/f'(z), then z,41 = F(x,). According to part (e) of Exercise 67, a sequence of this type con-
verges to a root x = « of = F(x) if on the interval |z — o] < |21 — @] we have |F'(z)| < a < 1. Since

F/( _ 2 " "2 : : (fl)2_ff” ff”
x)=1—=[(f")* = ff"1/(f)?, we will have convergence if 1 > a > |1 — 1L 7| Thus,
Newton’s sequence converges to o if on [z —a| < |z1—al, [ff”/(f")?] < a < 1. In other words, if it is pos-
sible to choose x1 close enough to a to guarantee | ff”/(f’)?| < a < 1, on the interval |z — | < |21 — af,
then Newton’s sequence converges to . To show that this is always possible, we let M be the maximum
value of |f”| on the open interval containing « in which f”(z) is known to exist. Because f’(a) # 0,
there exists an open interval I containing « in which f’(z) # 0 (by continuity of f/(z)). Let m be the
minimum value of |f/(z)| on I. Since f(x) is continuous at = «, where f(a) = 0, there exists an open
interval |z — a| < § contained in I which |f(z)| < am?/M for any a such that 0 < a < 1. Consequently,
for |z — a| <4,

am? M
M m?2

=a<l1.

ffl/
’(f’)2
Thus, if |21 — a| = §, we may say that for all z in |z — a| < |z1 —al, |ff"/(f")?| < a < 1, and Newton’s
iterative sequence converges to a.

EXERCISES 10.2

. The limit function is f(z) = 0, since for 2. The limit function is f(z) = 0, since for
eachxin0<z<1, eachxin0<z<1,
. nx . x 0 i n’z . x
im = lim — =0. im ——— = lim ——5—— =
n—oo 1 +n2x2  n—oo 1/n+ na? n—oo 1 +n3x2  n—oo 1/n?+ na?
y Y
12+ y) 1t
pA
£ 5
S A
fs 2
Ji
5
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3. The limit function is f(z) = «, since for 4. The limit function is f(z) = 1/z.
eachzin0<z<1,
x? x?
n—oo l+nxr n—ool/n+4w
y y
45 F A 2|
5 A
A
A 5

5. Since f,(0) = fn(1) = 0, the limit function 6. There is no limit function.
f(z) has values f(0) = f(1) = 0. For fixed
rin0<z <1,

1—
f(z) = lim na™(1 —2) = lim n(fnx)
n—o00 n—o00 x
— lim 1_7%: lim MZO.
n—oo —x~"Ilnr n—oo Inz
’ PN
5
1/4 1 7 X
1k
1 X
2t
7. There is no limit function. 8. Since f,(0) = fn(1) = 0, the limit function

f(z) has values f(0) = f(1) = 0. For fixed
rinl0<z<l,

2 1— 2
f(z) = lim n?2™(1 —2?%) = lim n( 7nx )
n—o00 n—o00 x
2n(1 — 22 2(1 — 22
= lim 711( x):hm 7( )
n—oo —x~"Inz  n—oo 7" (Inx)?
2(1 — a2)a"
= 20T

n—oo  (lnx)?

100+

50F
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9. The limit function f(z) has value 2 at z = 0, 10. The limit function is f(x) = 1.
and for all other vaues of z,
2 + nx? . 2/n + x? B

= lim
n—oo 14+ nzx n—oo 1/n+a

1 2 x X

11. The limit function f(z) has value 1 for 12. The limit function is f(z) = 1.
all z except x = 0, 7w, where its value is 0.

13. The limit function f(z) has value 1 for 14. The limit function is f(z) = lim

n—oo et

all z except x = m, where its value is 0.
y

15. The sequence {z"} converges to 0 for —1 < x < 1, to 1 for x = 1, and diverges for all other values of z.
Hence, the sequence {(1 —x™)/(1 —x)} converges to 1/(1 — z) for —1 < z < 1 and diverges for all other
values of x.
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EXERCISES 10.3
. Since f(0) =1, f/(0) = —sin0 =0, f”’(0) = —cos0 = —1, f”(0) =sin0 = 0, f"(0) = cos0 = 1, etc.,
Taylor’s remainder formula gives

2 at R.B

P —_—— _— e e . 1 n
cost =1 o + 1 + term in z" + R,, ot

dn+1 :Cn-i-l
where R,, = W(COS x)‘z:znm. The ntt . \ / \ / L
derivative of cosz is +sinz or + cosz, so that \\y W X
dn+1 -1k

- COosSXx
s COSZ|g=z, | < 1. A

Hence, |R,| < |z|**!/(n + 1)!. But according
to Example 10.5, lim,, o |2|™/n! = 0 for any

x whatsoever. It follows that lim,, .., R, = 0, and the Maclaurin series for cosx therefore converges to
cosz for all . We may write

2zt

cos:c:l—i—l-z—iwu, —00 < x < 00.

. Since f("(z) = 5"¢>®, Taylor’s remainder formula for € and ¢ = 0 gives

2 3 n

5 5 5
ST =145+ =2+ =2+ + =2" +R,,
2! 3! n!

Y
]
<
v

n+1 n+1 n+1_5z
d T R R

5x
dan+1 (6 )\z:zn (7’L+ 1)' = (7’L—|— 1)| x . sk /8 3
If x < 0, then x < z, <0, and |R,| < 5" z|["*!/(n + 1)
According to Example 10.5, lim,_, |2|"/n! =0 , ,
for any = whatsoever, and therefore -1 1 X
limy, 00 52| 1 /(n + 1)! = 0 also. P
Thus, if z < 0, limy, . R, =0. If z > 0,

where R,, =

By

ST
e
D

then 0 < 2, < x, and

|R |< 5n+1€5x|x|n+l e 5n+1|x|n+1
" (n+1)! B (n+1)!

But we have just indicated that lim, ., 5"*!|2z|"*!/(n +1)! = 0, and therefore lim,, ., R,, = 0 for
x > 0 also. Thus, for any » whatsoever, the sequence {R,,} has limit 0, and the Maclaurin series for ¢5*
converges to e°%,

. Since £(0) = sin (0) = 0, f(0) = 10cos0 = 10, f7(0) = —10%sin0 = 0, f”(0) = —10%cos0 = —10°,
f"(0) = 10*sin 0 = 0, etc., Taylor’s remainder formula gives

10323 10527

sin (10z) = 10z — S + i

+ -+ term in 2" + R,
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m+1 n+1

T

Ok The n'® derivative of sin (10z) is +10" sin (10x) or
n !

where R, = W[sin (102)] =2,

£10™ cos (10z), so that
dn+1

Tt 0 (102)]jg—, | < 1071,

Hence, |R,| < 10"+ z["*t1/(n + 1)!. According R.B

to Example 10.5, lim,, o |2|"/n! =0 1t
for any = whatsoever, and therefore
limy, 00 10" z|" T /(n + 1)! = 0 also. It R s

follows that lim,, ., R, = 0, and the /5
Maclaurin series for sin (10x) therefore X
converges to sin (10z) for all z. -
We may write

S

sin(10x)

10323 10525
30 +T+~-~, —00 < x < 00.

sin (10z) = 10z —

. Since f(n/4) = sin(w/4) = 1/v2, f(x/4) = cos(n/4) = 1/V/2, f'(r/4) = —sin(r/4) = —1/V/2,
" (r/4) = —cos (n/4) = —1//2, " (7 /4) = sin (n/4) = 1/+/2, etc., Taylor’s remainder formula gives

sinz = % + %(x —m/4) - g;lﬁ(x —m/4)% - 3!1@(9: —7/4)> + ..+ term in (v — 7/4)" + Ra,
dn+1 . (.I _ 7T/4)n+1
where Ry, = ———(sin x)n:znw

The n'* derivative of sinz is +sinz or

=+ cosz, so that 3L Y
dn+1 i
W(Sinx)m:zn S 1. k .
5
Hence, |R,| < |z — /4" /(n + 1)!. According R

to Example 10.5, lim,,_, |z|*/n! =0 4’ AN A\ [ 2x
for any = whatsoever, and therefore / X

limy, oo |2 — 7/4]"F1/(n + 1)! = 0 also. It
follows that lim,, ., R, = 0, and the
Taylor series for sinx about 7/4
therefore converges to sinx for all z.

sinx

So
&)

3t

We may write

1 1 1
sine = — 1+(x—7r/4)—§(3:—ﬂ'/4)2—5(3:—77/4)3+~-~ , —00 << 00.

V2

. Since f("(z) = 2"e?*, Taylor’s remainder formula for e2* and ¢ = 1 gives

22 2 23 2 on 2
e =62+262(x—1)+2—f(x—1)2+3—‘f(x—1)3+---+ n‘f (@ — )" + Ry,
dnJrl o ((E _ 1)n+1 2n+1622n I
where R,, = W(e lz=2, CESN = R (x—1)". Ifz <1, then x < 2, <1, and |R,| <

2ntle2|z — 1|7 /(n 4+ 1)!. According to Example 10.5, lim,,_, |2|"/n! = 0 for any z whatsoever, and
therefore lim,, .o 2" e?|z — 1|"T1/(n + 1)! = 0 also.
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Thus, if z < 1, lim, oo R, = 0. If x > 1,
then 1 < 2z, < x, and
n+1_2x
Rl < 2l A = e |
(n+1)!
But we have just indicated that
limy, 00 2"z — 1|71 /(n 4+ 1)! = 0, and
therefore lim,, _,oo R, = 0 for x > 1 also.
Thus, for any = whatsoever, the
sequence {R,} has limit 0, and the
Taylor series for e2* converges to %,

2n+l|x_ 1|n+1 20k
(n+1)!

oo

621_227162(,%—1)" —00 < T < 00
N n! ’ '

n=0
. Since f(™(0) = 2", the Maclaurin
series for e2® is

s n 2,.2

2 2 I -
St ml2et g > :

[ ! ' 2

= n! 2! ® e
Plots of the polynomials suggest that B,
R

the series converges to €2 for all x.

oY
o

Pav]

Lo

. Since f(O) = 17 f/(o) = 07 f”(O) = _327
£(0) =0, £7(0) = 34, etc., the
Maclaurin series for cos 3z is \ Y 1?2/
32(E2 341.4 x (_1)713271
122 422 4= ALY

STRTI ; Cn)r *
Plots of the polynomials suggest that cosx
the series converges to cos 3z for all x. b= /

. Since f(7/2) =1, f'(7/2) =0,

F'(n)2) = —1, f"(x/2) = 0, and \ Y
f""(w/2) = 1, the Taylor series for sinz
about x = /2 is

1_%+..._§%((;))T(x_w/z)%. 2/\\ \

Plots of the polynomials suggest that the
series converges to sinx for all z.
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10.

11.

12.
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Since f(™(0) = n!, the Maclaurin
series for 1/(1 — ) is

Zx"zl—l—x—i—:ﬁ—i—ﬁ—i—--- .
n=0 P
Plots of the polynomials suggest that the 3
series converges to 1/(1 —z) for —1 < z < 1.

573

Since f(™ (1) = n!, the Taylor series for
1/(2 —z) about z =1 is

Y- =14 (- 1)+ (- 1)+
n=0

Plots of the polynomials suggest that the B
series converges to 1/(2 — z) only for
0<z <2

By writing f(z) in the form 1/2 — (1/2)/(1 + 2x)
and taking derivatives, we quickly discover that
f(0) = (=1)"*+127 1! for n > 1. The

Maclaurin series for f(x) is therefore 2t

Z (=1)mHion=lyn = — 22 4+ 423 — 8t + -

n=1

X
1+2x

Plots of the polynomials suggest that the -1
series converges to x/(1 + 2z) only for
-1/2<z<1/2.

21

Since f(™(0) = (—1)"3™(n + 1)!, the Maclaurin

series for 1/(1 + 3z)? is

D (=13 n+1)a" =1— 6z +3°(3)2 + -

n=0 P
Plots of the polynomials suggest that the ]
series converges to 1/(1 + 3z)? only for : 5
-1/3<x<1/3. (143x)°

Y]
s

S

<

L
r-/
-1




13.

14.

15.

16.

17.
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Since f(™(2) = (=1)"*(n — 1)!/2" for n > 1,
the Taylor series for Inz about x = 2 is

In2+ i ﬂ(m —2)"
= n A
(r—2) (z—2)?
2 2.2
Plots of the polynomials suggest that the
series converges to Inx only for
0<z <4

=In2+

4+

Calculating derivatives of the function leads to
—~1)»*t137[1.3.5...(2n — 3
the formula £ (0) = D3 (2n —3)]

271
for n > 2, together with f(0) =1 and f’(0) = 3/2. R
The Maclaurin series for /1 + 3z is therefore 2

32 o= (=1)"*T137[1-3-5---(2n — 3)]
14 2=
+ 2 + 7;2 2nn!
Plots of the polynomials suggest that the VI+3x
series converges to v/1 + 3z only for TP

-1/3<x<1/3. *

B3]
el

z".

<=

—_

'
—_
T

Calculating derivatives of the function leads

() gon (CDP[1-4-7- (30— 2)]
to the formula f'"™(2) = SYESITRVE
for n > 1. The Taylor series for 1/(4 + z)'/3

about z = 2 is therefore
oo

1 -nH"1-4-7---(3n—2
RN S (30— 2)

B eI I VI

: 9n32n61/3 ) (z—2)" - :
Plots of the polynomials suggest that the 1
series converges to 1/(4 + x)'/? only for (4+x)”

—4<zx<S8. -1f

If I’ is the open interval in which f’(z) and f”(z) are continuous, and we apply Taylor’s remainder
formula to f(z) at z¢ in I’, we obtain

f"(z1)
2

where z; is between z¢ and x. Suppose that f”(zg) > 0. Because f”(x) is continuous at xg, there exists
an open interval I containing x¢ in which f”(z) > 0. For any z in this interval, it follows that f”(z1) > 0
also. As a result, for any x in I, f(z) > f(zo), and f(z) must have a relative minimum at z¢. A similar
discussion shows that when f”(z¢) < 0, the function has a relative maximum at zo. If f”(x0) = 0, no
conclusion can be reached.

1) = o) + 7o)~ 20) + L (@~ a)? = flao) +

(z — x0)?,

If I’ is the open interval in which f(x) has derivatives of all orders, and we apply Taylor’s remainder
formula to f(x) at zo in I’, we obtain

n!

n f(nJrl) (Z")

(x —x0)" + ) (x — x0)

f(‘r) = f(xO) + f/(wo)(;[: — ;CO) + ..

f(n+1)(2n)



18.

19.
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where z,, is between xg and x.

(i) Consider first the case that n is even, and suppose that £+ (z5) > 0. (A similar proof follows in
the case that f("*1)(z) < 0.) Because f("*1)(z) is continuous at g, there exists an open interval T
containing xo in which f("*1)(z) > 0. For any x in this interval, it follows that f(™*1)(z,) > 0 also. As
a result, when z < zo, f(x) < f(x0), and when x > zo, f(z) > f(zo). This implies that ¢ must yield a
horizontal point of inflection.

(ii) Consider now when n is odd and £+ (z) > 0. In this case, for any z in I, f(x) > f(z0) and f(z)
must have a relative minimum at zg.

(iii) When 7 is odd and f*D(z¢) <0, f(x) < f(xo) in I, and f(x) has a relative maximum at z.
(a) This follows from / f(t)dt = {f(t)}j = f(z) — f(e).
(b) If we set u = f'(¢t), du = f"'(t) dt, dv = dt, and v =t — z, then
1@ = 1@ +{t-2r0} - [(t-arwa=50+ree-a+ [ @-orod
(c) If we now set u = f"(t), du = f"(t)dt, dv = (v — t)dt, and v = —(1/2)(z — t)?,
T — 2 £n T x
@)= )+ £ -0+ {- PO - [l

2
_ / f"(c) 2, 1 [7 2 e
—f(c)—|—f(c)(x—c)—|—T(x—c) +§/C(x—t)f (t) dt.

(d) One more integration by parts should convince us that the formula is correct. If we set u = f"(t),
du = f""(t)dt, dv = (x — t)?>dt, and v = —(1/3)(z — t)3,

"¢ T — 3 g z T
@) = £+ £@a =0+ H0 24 g { IO 2 [t ar
— 10+ 10—+ 2w -p+ L@ 4 5 [e-orrmwa

(a) Limits as z — 0% and x — oo

together with symmetry about the y-axis
give the graph to the right. y
(b) If we can show that

2
671/1‘

lim =0,
z—0t "

then the limit from the left must also be zero.

—1/x
Suppose we set L = lim+ , and take logarithms, - 50X
z—0
1 1 2]
InL=- lim | - +4+nlnz ) =— lim ihnaT T .
z—0+ \ 22 z—0+ x?
Inz . 1/x

Since mli,%l+ ?lne = ggling+ a2 = m 28 = mli%l+ (—2?/2) = 0, it follows that In L — —o0 as x —

0*. Therefore, L = 0.
fW) - fO) et
/ = =
(©) £/0) = Jim JOTO iy
f*)(0) = 0. Then

=0, by part (b). Suppose that k is some integer for which

&) (p) —

F9(h)
—
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Now, any number of differentiations of f(x) = e~ /7" gives rise to terms of the form Ae~1/*" /x™, where
n is a positive integer, and A is a constant. It follows that f(*)(h)/h must consist of terms of the form
Ae=V/P* Jpn which have limit zero as b — 0. Thus, f**1(0) = 0, and by mathematical induction,
f™(0) =0 for all n > 1.

(d) The Maclaurin series for f(z) is

/ f7(0) o
F@) = FO) + f/(0)x + 52a® 4 =0+ 0+ 0+ .
(e) This series converges to f(x) only at z = 0.
EXERCISES 10.4
1
1. Since the radius of convergence is R = lim ﬁ‘ =1, the open interval of convergence is —1 <
n—oo n
r < 1.
n2
2. Since the radius of convergence is R = lim W =1, the open interval of convergence is —1 <
n—oo n
r < 1.
. . : . /(n+1)3 : :
3. Since the radius of convergence is R = lim m =1, the open interval of convergence is —1 <
n—oo n
r < 1.
4. Since the radius of is R=li n°s" L interval of i
. Since the radius of convergence is R = lim |——————| = =, the open interval of convergence is
g n— o0 (’rL —+ 1)23n+1 3, P &
-1/3<x<1/3.
. . . . /2" . .
5. Since the radius of convergenceis R = lim W = 2, the open interval of convergence is —1 < = < 3.
6. Since the radius of is R = li (1)’ 1, th interval of i
. Since the radius of convergence is R = lim | ——————| = e open interval of convergence is
° e [E TSV B ’
-4 <z< -2
7. Since the radius of convergence is R = lim |——=—=| = 1, the open interval of convergence is —3 <
n—oo|1/y/n+1
Tz < —1.
on (n - 1)2
2
8. Since the radius of convergence is R = lim LQ = —, the open interval of convergence is
n—oo 2n+1 n 2
n+3
T/2 <x<9/2.
9. If we set 2. the i L o i L Since R li L/n* 1, it follows that R
. If w =x n —x" = —y". Sin = lim |——=|=1,1i W r =
’ , n=1 TL2 n=1 n2y Y n—oo 1/(” + 1)2 ’
v/ Ry = 1. The open interval of convergence is therefore —1 < = < 1.
o0 o0 _1 n
10. If we set y = 3, then ;(—1)":1:3” = ;(—1)’@". Since Ry, = nlirgo ﬁ =1, it follows that
R, = Ryl/ 3 = 1. The open interval of convergence is therefore —1 < z < 1.
2"(n —1 1
11. Since the radius of convergence is R = lim (n—1)/(n+1) = 1/2, the open interval of convergence
n—oo| 2ntlp/(n+ 2)
is —1/2 <z <1/2.
1 1/v 1
12. n ‘ AEEY B

o0 1 o0
If we set y = z3, then Sl = 13 . Since R, = lim |-‘t-—e| =
Y ;\/n—l-l Y ; s i (At YN
1/3

follows that R, = R,/ = 1. The open interval of convergence is therefore —1 < x < 1.
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18.
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20.
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22.

23.

24.

25.

26.

27.
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(_1)71 n

(o'} 1 x . . —1)"/3™
If we set y = .%'2, then § : ( 3n) p2ntl — :I:\/gz 30 y". Since Ry = nh_}ngo %
n=0

n=0

follows that R, = /R, = V3. The open interval of convergence is therefore —V3<z< V3.

Since the radius of convergence is R = lim (—e)"/n2
verg T oS (—e)+1/(n +1)2

=3, it

1 .
= —, the open interval of convergence
e

is —1/e<xz<1/e.
n2/32n

W =9, the open interval of convergence is

Since the radius of convergence is R = lim

-9<x <.
Since the radius of convergence is R = lim ot = lim <L)n <L) = l(0) =0, the
n—oo|(n+ 1)t nSco\n+1 n+1 e ’
series converges only for z = 0.
1/n?

Since the radius of convergence is R = lim = 1, the open interval of convergence is —11 <

nse | Tf(n + 1)2

xr < —9.

n’3" LN interval of '
a3 = = e open mterval O Convergence 1S
(n+ 1)33n+1

Since the radius of convergence is R = lim 3

n—oo

-1/3 <z <1/3.
— 2 2n __ n _ _
If we set Yy =ax, then ;mw —;my . Since RU —nll_)H;o m = 1/3, 1t
follows that R, = /Ry = 1/\/§ The open interval of convergence is therefore —1/\/5 <z < 1/\/§
- 1/5m
If we set y = x3, the series becomes ngoy"/f)". Since R, = nh_)ngo 1/én+1 =5, it follows that R, =
R,'/® = 5'/3. The open interval of convergence is therefore —5'/3 < x < 51/3.
1/1 1 1 1 1

Using L'Hopital’s rule, R = lim |— 07 | _ ppy 0O+ o VO+D 0 e open in

n—oo|1/In(n+1) n—oo Inn n—oo  1/n
terval of convergence is therefore —1 < z < 1.

1
1 1 1 1

Using L’Hopital’s rule, R= lim n? inn = lim nin+ ): im /(n/—|— ) = 1. The open

n— 00 n— oo nn n— 00 n

(n+1)2In(n+1)
interval of convergence is therefore —1 < x < 1.
(n!)3/(3n)! ‘ B (n)3(3n + 3)(3n + 2)(3n + 1)(3n)!
[(n+ DIB/Bn+3)l| ~ noe (3n)!(n + 1)3(n)?3

Since R = lim = 27, the open inter-
val of convergence is —27 < = < 27.

=1, the open interval of conver-

Since R = lim

n—oo

2-4-6---(2n) 3-5---(2n+3)| o 2n+3
3-5:-7--2n4+1)2-4---(2n+2)| n—oco2n+ 2
gence is —1 < x < 1.
[1-3---(2n+ 1)]?
2n ! 42n+2)(2n+1
Since R = lim 2% (2n) 5| = lim (2n +2)@2n +1)
n—oo | [1-3---(2n + 3)] n—o0 (2n + 3)?
22n+2(2n + 2)!

= 4, the open interval of convergence is

—4d<r<4

1 5 = <x3>n 1 4 . x3 1/3
—a" = Z — | = T = 5 provided |—| <1 = [z] <4

=4 —=\4 1—a3/4 4—-x

Z (—e)*z" = Z (—ex)"” = 116:;6 provided | —ez| <1 = x| < 1/e



28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
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rz—1
= 1 n o= [z —-1\" 9 r—1 , z—1
;W(,T—l) znzl( 5 ) :1_95—1:10—17 provided —'<1:>|:v—1|<9
B B 9

=1
Z " = Z 5(5:1:)" =% valid for all z

—_1\n e —_1\n 2n+1
Lx%” =z & z =xsin(x/3 valid for all z
( 3

= 3 (2n + 1) — (2n+1)!
(=3)" (z4+1)" = i ! —[=3(z+1)]" = e 3@ valid for all z
n! N n!
n=0 n=0
Z (=1) " =—-1+4 Z —(—z)"=—-14¢e* valid for all z
—~ n! o n!

2 (2n+ 1) 2 2n+ 1))
ig (x—1/2)" il 22 — 1)" = e** 71 valid for all ©
oo n 2n
Z i ntd =z cos(2?/2)  wvalid for all x
= 22"(271
x (_1)n ) 2 4 IG xS
Jo(z) = no1- L = -
@) o) =2 oy 2 HERE PR A
= (=)™ R I x® z’ z?
J = nrl— — —
(@) ; 220+ () (n+ 1)1 5~ 2391 T 250131 273141 T 29415
™ xm-{-? xm+4 xm+6 xm+8
I () = - + - +
9mml  2m2(m + 1)l | 2mH42l(m 1 2)1  2m+631(m + 3)] | 2m+841(m + 4)]
(=)™ 22t mE2(n + Dln+m+ 1! 9 B
(b) R= hm STl (n ) ) —nlingo2 n+1)(n+m+1)=

The 1nterva1 of convergence is therefore —oo < & < 0.

afa+l)---(a+n-1FB+1)---(B+n-1) ,
”Z (1) (y+n—1) ’

ala+1)---(a+n—-18(LB+1)---(B+n—-1)
~ im Yy +1) - (y+n—1) ~ Jim v+n)
(b) R = lim al@ 1) - (atnBB+1) - (B+n) im (a+n)(B+n) 1
(m+Dy(y+1)-(y+n)
EXERCISES 10.5
1 1 1 32\" = (—=1)"3"
: 3x+2_2(1+3x/2)_§z<_7) :Z(z%ﬂx | =32/2 <1 = ol <2/3

n=0

i ﬂ(:p + 1) = —(z +1)? i ((_i(x + 1) = —(z +1)?sin(x +1)  valid for all z

o0



10.
11.

1 1 1 1 \" =D, 2
=i () m12 (OF) =X e |7
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o0

<l=|z|<2

n=0 n=0

o~ ()"
Since cosz = Z 22", —oo < x < oo, it follows that
n=0

n

cos (z?) = v~ (U 2?)?
@) = 3 G

—00 < x < 0Q.

RN
=2 o)

o0
1
Since e” = Z —z", —oco<x<oo, it follows that

3

|
nion.
1 57
5x n n
=D =Gt =) = —0 <z < 00.
(& non'(l') non!,@, o0 x o0

o0

. Since f(z) = e® = e3e*73, and the Maclaurin series e* = Z —a" converges for all z, it follows that
n!

n=0
ex:egii(x—fi)":ie—g(x—fi)", —00 < T < 0.
n=0 n! n=0 n!
Since f(z) = e!72* = ee~2*, and the Maclaurin series e* = Z —x" converges for all z, it follows that
n!
n=0
N =1 2 e(—1)"2"
1—2x — n __ n
e —e;m(—%s) —;771! ", —oo <z < oo.
Since f(z) = e!72% = ¢372(+1) = 3 ¢=2(z+1) and the Maclaurin series e* = Z —a" converges for all
n!
n=0
x, it follows that
Con - >, e3(—1)m2n
—632 2(x+1)] Z — (x+1) —00 < & <00
n=0
_1 2 2,2 4 _ 2 1 4 Ll om
_2<2+§x +5x+ ) 1+§w —i—zx—i- ;)(277,)30 , o << oo
smhx:§(e —e ):5 [Zﬁx _Zﬁ(_x) ] :ngI
n=0 n=0 n=0
1 2 2 - 1 1 = 1 o1
_2<2x+§x + g ) T gt et ;)7(271—1-1)!96 , —00<T <00

This function is its own Maclaurin series.
Since f(—2) = 33, f/(—2) = —46, f"(=2) = 54, f"(-2) = —48, f""(~2) = 24, and f(")(=2) = 0 for
n > 5, formula 10.17 gives

54

f(:z:):33—46(a:+2)+§(x+2)2 ifj( +2)? +i—?@:+2)

=33 —46(x +2) +27(x +2)% — 8(x +2)° + (z + 2)*.
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1 1 1 I/ z-2\" & (-1)" -2
12. = = = — — = — )" — 1
2+3 5+ (z—2) z_2 5Z< 5 ) Z5n+1<x " } 5 ’< -
5 1+—5 n n=0
—3I<r<T
13. Long division gives
e L5252 1 5 _LoseTze )"
20 +5 2 2245 2 2x-1)+7 2 20 —-1)] 2 14 7
4|1+ == n=0
7
1 & 5(—1)ntign-t N 2(x — 1) 9
=?+Z:1 tr @) |mE <l = o <a <
14. Long division gives
z? x 3 9/16 _3( _2)_E 9/16 _E_l(x_Q) 9/80
3 —4x 4 16 ' 3—4x 4 16 —5—4(z—2) 16 4 4(x —2)
5
11 1 9 "
= — - (z-2)— — ——(z—2
6 172 SO;{ (= )]
11 9 4 2 (—1)m4"
=——_Z ——|1-=(z -2 —2)"
6 102 80[ 5@ Hﬂ; @ )]
4 4 2 9(—1)ntign-2 4(x —2) 13
= = —(z—2 -2, = 1 ° —
15. With the binomial expansion 10.33b,
1 —1/2)(-3/2 —1/2)(=3/2)(~5/2
:(1+I)71/2:1_§+( /2)( 3/)x2+( /2)(=3/2)( 5/)x3+~-~, cz<1
T+ux 2 2! 3!
. m 3 , 35,4 _ = (-D)"1-3-5---(2n—1)] ,
Sty gttt T g
= (=D)™[1-2-3-4---(2n)] = (—1)™(2n)!
:1 n: n
+n§ nnl2-4-6---(2n)] ; 2n(nh)2 ©
16. Term-by-term integration of 192 27;0(—21') zngo(—l) 2"x™ gives
1 R G A
o (_1)n2n+1

Setting 2 = 0 gives C = 0, and therefore In |1 4 22| = Z 2™, Since the radius of conver-

n+1
n=0
gence of the geometric series is 1/2, this is also the radius of convergence for the series of the logarithm
function. The open interval of convergence is therefore —1/2 < x < 1/2, and the absolute values may
be dropped,

o (_1)n2n+1 L ©° (_1)n+12n
n(1+20) = S 2T e o DT 2
n=0 n+1l n=1 n
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17. With the binomial expansion 10.33b,

(1432)%2 =1+ (g) (3z) + %(3@2 + (3/2)(1/32!)(_1/2) (Br)*+---, —1<3z<1
14 ZH 2?;; 2 22—;953 35;31(!3);#— 36(12)5(53!)(5)96”,“
=1+ gx + 287x2 %x?’ + 2 (_1)n[1 3 52.7;7.1!(271 — 5)]3n+1 "
s z N % 2 27 5y i 2. 34%. | (2(211;;])2(71273 — 4)]3"“$n
=i g + % S ?_sz ni_oj (_212)717(22:! (_n41! g;!ﬂxn
L X G STy

18. Termwise integration of

1 1 7 1 1 T —2 — (—1)" n
r 24+ (x—2) 201+ (z—2)/2] §Z< ) ;}2%1 (z-2)

o0 _1 n
gives In |z| = Z %(m —2)"" 4 C. Setting 2 = 2 gives C' = In2, and therefore
n n

In|z] =In2+ Z + 0 2n+1 (x —2)"*!. Since the radius of convergence of the geometric series is 2,
this is also the radlus of convergence for the series of the logarithm function. The open interval of
convergence is therefore 0 < z < 4, and the absolute values may be dropped,

n+1
1n17—1n2—|—z +12n+1 —2)ntl = 1n2—|—z (x —2)".

19. Termwise integration of

I 1 B 1 1l z+1\" o (-1)" N
x+3_2+(x+1)_2[1+(x+1)/2]_§;(_ 2 ) =2 grrr (T +1)

n=0
G

gives 1H|I+3| = Z W

(z + 1) + C. Setting x = —1 gives C' = In2, and therefore

Injz+3=In2+ Z (z +1)""!. Since the radius of convergence of the geometric series is

+ 1 2n+1
2, this is also the radlus of convergence for the series of the logarithm function. The open interval of
convergence is therefore —3 < x < 1, and the absolute values may be dropped,

n+1

In(z+3)= ln2+z +12n+1 (x+ 1) = ln2+z (x4+1)".

! ! L 1 & o—a\" & (1) .
0 - =32 \-—) = gy ded
r—4

4

}<1:>O<x<8
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21. With the binomial expansion 10.33b,

<x+12>3 S +1:c/2>3 =5(1+3) =5 [1”‘3) (3)+ 2= (2 RENED)

1 .4 4 . .
_5[1_3_:174_3_ 2__5 3+ﬂx4+---]

9 Tt T r T TS
S (=D)"(n+1)(n+2) ,
D )

2n+4 Ty

valid for —1<g<1:>—2<:v<2.

22. With the binomial expansion 10.33b,
1 1 1

G 1w 9F Oraap o HEY
=1-2(z—-3)+ (_2)25_3)@—3)24—%(m—iﬁ)g—l—"-
i "n+1)(x—3)", provided —l1<z—-3<1= 2<z<4

23. With the binomial expansion 10.33b,

1 1 B 1 1<1+ —1)2
(x+3)2 [d+(x-1D2 161+ (x—1)/42 16 4

1 1\ (=2)(=3) [z —1 (=2)(=3)(=4) [z —1\"
T 16 1_2(4>+ 2! (4)+ 3! (4>+"'
_Z 4nf2+ 1)(:13—1)", provided — 1 < :CT_1<1 = -3 <z <5
1 1 /2 —-1/2  1/6 1/10

24. == = = f—
2248z +15 (z+3)(z+5) z+3 =x+5 1—|—:v/3 1+x/5

52 (5 w5 (5 - L X

0 n=0 n:()

oo _1)n 1 1
:Z( ) (3n+1_5n+1)x", valid for —3 < x < 3.

5 =1—z?+a2* —2% 4. gives

3 5
Tanlx:(:v—x——i—x——---)—i—C.

25. Term-by-term integration of 1

3 )

oo _1 n
Substitution of z = 0 gives C' = 0, and therefore Tan™ 'z = Z uxznﬂ

convergence is —1 < x < 1. =0 n+1
26. With the binomial expansion 10.33b,

ViT3=V3/IT2B =3 [1+ <%> (g) L 1/2)(=1/2) (%)2+ (1/2)(=1/2)(=3/2) (§)3

3 2! 3!
x 15, (B (1B)(5)
-V [1 T6 " ozt gt i © T }

=3
2n3np)

+“—+Z "H1-3-5- (2n—3)]xn]

. The open interval of
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1) *+1-2-3-4--(2n—3)(2n —2)]
=3 1+___+Z 4-6---(2n — 2)]6™n! v
)rH(2n —2)
_\fH___JFZ 12"n'n—1) I]
"+1(2n—2)' x
= " i —-1< =< < 3.
\/_—I—Z 12"n'n—1) 2", wvalid for 1_3_1:>|:C|_3

27. With the binomial expansion 10.33b,
V+3=+56+(x—-2)=V5/1+(z—-2)/5

_ 1+% (xg2> N (1/2);_1/2) <x;2)2+ (1/2)(_1?{!2)(_3/2) <xg2>3+m

_\/5[1+l0(x_2)_ 101221(17_2)2+ 110§§|(I—2)3+-'-]

:\/5+£ —2) +Z “UMT 85 2= g

107n!

\/— 1n+1[1.2.3...(2n_2)] "
:\/g—i-—(ZC—Q)"'Z 2. 6+ (2n — 2)]107n! (@-2)

n+1(2n_2)|
_\/—+Z5n 1/292n—1p| (n 1)|(

)
z—2)", valid for —1§ng1:» 3<x<T

28. With the binomial expansion 10.33b,
(1—22)"3 =[-1=2(x—1)]"3 = —[1+2(z—1)]/3

S UL T O UL C T I TR
2 309 .

:_1_§(;¢_1)+%( I

:_1__96_1 +Z 1)m2n[2 - ;s! -(3n —4)](96_1)”’

nln . (3n —
R Sl GETE 2t BRI )

valid for -1 <2(x—1) <1 = 1/2 <2z <3/2.
29. With the binomial expansion 10.33b,

(EQ

1 +a22

221 42?) 7% = 22 [1 +(-2)@?) + (_2)('_3) (2224 EDENED (o,

2% — 224 + 325 — 428 + .

Zn D2 validfor —1<2?<1 = —l<z<1

n=1

30. With the binomial expansion 10.33b,
(1= )% — 4 [1+ <%) (—z) + (1/3);!—2/3)(_:6)2+ (1/3)(—2?{!3)(—5/3>(
2 5 (206) 4 2O s

—x)3—|—~-~

3 322! 333! 344!
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2 =2-5-8-(3n—T7)
3 = 3 l(n-1)

*© (Z1)-2-5-8---(3n—17
:x+z( )3n1(n_1()!n )xn, valid for —1 <z < 1.

31. We extend the calculations in Example 10.24 to obtain another nonzero term. When we equate coeffi-
cients of 2%, we obtain 0 = ag — a4/2! + a2/4! — ao/6!, and this implies that ag = 0. Coefficients of x”
give —1/7' = a7 — a5/2! + a3 /4! — a1 /6! = a7 = 17/315. Consequently,

3 25 1727
3 15 315 ’

8x®  64x®  2176z7

d if 1 by 2z, tan2z =2 —
and if we replace x by 2z, tan2z =2z + 3 15 + 315

1
32. If we set sect = —— = ag + a12 + asx® + - - -, then
Ccos T

z? ozt S
1= (a0 + a1z + aza® + aza® + - ) (1_§+Z_ﬁ+m)'
We now multiply the power series on the right and equate coefficients:
1: 1=ag

. O0=a

22 0= —ap/2'+az = ay=1/2

% 0=—a1/2!+a3 = a3=0

2t 0=ag/d —az/2!'+ays = ay=5/24

2% 0=a1/4 —az/2!'+a5s = a5=0

2% 0= —ap/6!+az/4! —as/2!+ag = ag=61/720

Thus, secx =1+ 13: —l—i _'_ﬂ 6 4+.... Long division could also be used.

2 24 720
2 23 a2t z3 b
33. e””sinxz(l—i—:v—i———i———i———i— )(:v———i———---)

3! 3! 5!
1 1 1 1 1 1 1
_ 2 3 4 5. ...
ot + (g-3) @+ (5-5) o+ (F-mmr5)
=z + 22 +?—%+

n22n
1+1+§: 1

|3 e -3

1
34. cos’z = 5(1 +cos2zx) = =

( n22n1
:1—1-2 2", —oco <z < oo
a5 1 B 1 B —1/5 /5 -1/5  1/20
oab-3r3 -4 (@3 —-4)(a3+1) 1423 23 -4 1+a2® 1-23/4
1 — S N A
— 552 ()
n= n=0
1



36.

37.

38.

39.

40.

41.

42.
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The Maclaurin series for Sin_l(:vQ) can be obtained by replacing z by 22 in the series for Sin~'z in
Example 10.26:
_ - 2n)! = (2n)!
Sin~L(22) — ( 2\2n+1 _ An+2 1.
in™ (@) ; Gt 2z @) ; Gnr ezt 0 ks

202 +4 8r+2 1.3 _, 11/3 . 3
r24+4r+3 (x+3)(x+1) r+3 z+1 1+z/3 +x

= —2—12(—5) +3Z (2——+3)+Z[ ( >n+3(—1)”}x"

1 - 11
:§+Z(—1)"(3— )x", valid for —1 <z < 1.

n+1
n=1 3
If we integrate the series L _ i 2", || <1, weobtain—In|l—z| = i ! 2"t 4+ C. Sub-
- =0 , , iU 1
o . —~ 1 . = 1,
stitution of z = 0 gives C' = 0, and therefore In|l —z|= — " = Z ——2a". The open
n=0 n+l n=1 n

interval of convergence is —1 < & < 1 so that absolute values may be dropped. If we replace x by z/ V2
and —x/+/2, we find

F@) = (1 +2/v2) ~In(1-2/V2) = i_% (_%)" ) O:_% <%>n

n+1 1 " 1+(_1)n+1 N
-3 [ v )= X [P

n=1

n

When n is even the coefficient of ™ is zero, and therefore

oo

. 2 2n+1 _ - \/5 2n+1
f) = n;) @n+1)2C02" T ; Cn+12n"

Since the added series both have open interval of convergence —v/2 < x < /2, this is the open interval
of convergence for the combined series.

If Y gan(z —c) =300 (bp(z —¢), then Y07 ) (an — by)(x — ¢)™ = 0. The right side of this equa-
tion is the Maclaurin series for the function identically equal to zero, and as such, its coefficients must
all be zero; that is, a,, — b, = 0 for all n.

The right side of this equation is the Maclaurin series for the function identically equal to zero, and as
such, its coefficients must all be zero; that is, a,, = 0 for all n.

1 /t\"
Z P, ( Z <%> e /30 — =t/30 Z py <30) = t/3%(!/3%) =1 The sum represents the
—o"

probablhty that either nobody, or just one person or two people, or three people, etc., drink from the
fountain. Since one of these situations must occur, the probability is one.

1 o0
Z np(1 — g n(1 —p)"~!  If we differentiate the series 1= gol“n, |z| < 1, term-
by-term, we obtain Z na" Z nz™ ', |z| < 1. We now substitute z = 1 — p into
n=0
this result, m = Z n(l — L Multiplication by p glves — Z np(l —
—lél=Dp —
- 1
(b) The probability of throwing a six is p = 1/6, and therefore Z np(l —p)"~t = 1—/6 =6.

n=1



43.

44.

45.

46.

47.

48.
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2 5~ (=" /”” 2
mdt == 127 dt
\F/ [ erfa= 23S

Z 2" 2 i (=D" a1
— — ——x
\/_ ! 2n+1 ﬁn:O (2n + 1)n!
Integrating the Maclaurm series for cos (71'152 /2) (see Example 10.21) term-by-term gives
o] 2n o]
[ &y (a2 e

= — dt = — " dt

?) /0 LZ) 2n)l \ 2 n;) @2n)l 227 |,
2n An+1 z St _1\n.-2n
_ Z " t -y (=D"r At
(2n)! 227 | 4n + 1 o (4n + 1)227(2n)!
valid for —oo <z < c0. A s1m1lar procedure leads to the Maclaurin series for S(z).
With the binomial expansion 10.33b,
x

esn et JGs 98 —6[(—)@(—)%(—

ENIS
o\a
\

C

—~

R (—1)"3" n+1 D"3"(n+1) .1 ~= (=113 In

But the coefficient of 2™ in the Maclaurin series is £ (0)/n!, and therefore

S0) ()t

(=1)nH13n=lnpl

_ (n) —
o gn+1 = [(0) = gn+1
The Maclaurin series for f(z) = ze™2® is
. > 1 = (—1ren o~ (et
2x __ n __ n+l _ n
- S(opn =N 2 D N S
e xngo n!( ?) 7;0 nl ngl (n—1)!

But the coefficient of 2™ in the Maclaurin series is £ (0)/n!, and therefore

(n) _1\n+lon—1 _1\n+1 nfln.
. n!(O) = 2_ 12)! = 0=t 1271 —21)! =yt

The Taylor series for f(z) =1/(3 4 x) about z = 2 is

1 1 - 1 Il z-2\" (- n
3+:v_5+(x—2)_5[1+(:v—2)/5]_37;J<_ 5 ) _7; sorr (T 2"

But the coefficient of (z — 2)” in the Taylor series is f(")(2)/n!, and therefore

(n) _1\n —1)n!
f n'(2) _ (571?1 — f(n)(2) _ (5711)+1 !
The Taylor series for f(z) = xe™® about z = 2 is
ze™ =[(z —2)+2e” D72 = 722 4 (2 — 2)] Z (_nl!) (x —2)"
n=0
=2 | gy B 2)”“]
n=0 n=0
e _1\n X 1\n+1
:n:0 n=1
e fag y BB 2)"]
L n=1 :
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But the coefficient of (z — 2)” in the Taylor series is f(")(2)/n!, and therefore

(2 —1)"(2 —n)e? N “1D)2 —n)n! (n—2)(—1)"+!
n!():( )(n' ) [ f()(2):( )e(Zn! ) :( )8(2 ) '

49. Since the Maclaurin series for z2 sin 2z

2 ax~ (D" i1 _ N (D22 s
2z = — (2 = ANt
x¥sin2z =z 7;0(271—1-1)!( x) ngo n i) x

contains only odd powers of z, the even derivatives of 22 sin 2 must all be zero.

oo o0
1 -1)"
50. Since the Maclaurin series for e~*", namely, e = E — (=)™ = E (=1 x*™  contains only
n! n!
n=0 n=0

712

even powers of x, the odd derivatives of e must all be zero.

51. Using the definition of J,,,(z) as the Maclaurin series in Exercise 38 of Section 10.4, we may write

_ - (_1)71 2n+m - (_1)71 2n+m—1
2m Jp(2) — & Jp—1(x) = anE0 Do mnl(n + m)!:v — :cnz:% T e 1)!:10

_ i m(_l)n x2n+m _ i (_1)11 x2n+m
22"+m*1n!(n +m)! 22ntm—Inl(n +m — 1)!

n=0
_ Z —n—m) p2ntm i (=pn+t 2n+m
22"+m 1n' (n+m)! = 22ntm=l(n — 1)l (n+m)!

-1 -1)"
_ Z ( ) x2n+m+2 — Z ( ) x2n+m+1
= 22ntmtinl (n 4+ m+ 1) = 22 tmtnl (n 4+ m+ 1)
=z Jpmi1(2).

52. Using the definition of J,,,(z) as the Maclaurin series in Exercise 38 of Section 10.4, we may write

Im-1(x) = Jms1(x) = i C1 gt i CL g2t

= 22ntm—Ipl(n +m — 1)! = 22ntmtinl(in + m+ 1)!

We lower n by 1 in the second summation, and separate out the first term in the first summation,

1 (_1)71 I2n+m—1

Tm-1(x) = T g1 () = 52
(@) +1() 2m=1(m — 1)!:Zj * ; 22ntm=lpl(n +m —1)!

- (_1)71 2n+m—1
+ ; 21— Dl(n+ m)l "

_ 1 m—1 (_1)77, 1 1 2n+m—1
C2m-1(m — 1)!30 +n¥l 22ntm—1(n — DH(n +m — 1)! (n + n—i—m)x

- 1 m—1 (_1)77, 2n+m 2n+m—1
_mx +z_:22"+m—1(n—1)!(n+m—1)! {n(n—i—m)}x ’

. m m l+i 2n+m 1)77, 2n+m71
- gm— lml 22n+m lnl TL+’ITL)

(27’L + m)(_l)n x?n-l—m—l
22ntm—1Inl(n + m)! '

o0

n=0
i (2n+m)(_1>n I2n+m71.

2n+moy | |
? 2 nl(n +m)!

Term-by-term differentiation of the series for J,,(z) gives J), (z) =

n=

Hence, Jp—1(x) — Jmt1(x) = 2J], ().
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53. With the binomial expansion 10.33b,

1 1 -1/2)(-3/2 —-1/2)(=3/2)(—=5/2
\/m:1_§(x2_2ﬂx)+%(x2_2ﬂx)2+( /)( 3'/ )( /)($2—2ul‘)3+

1 3 5
=1+ 5(2;@ —2%) + §(4,u2:172 —dpa® + xh) + —6(8,u3x3 — 12p22* + 6pa® — 2%) + -

L 3pY o 3 | 5%\ s
=1 42 _=7
+(u)x+<2+2)x —I—( 2+2 x® +

Thus, Po(p) =1, Pi(p) = p, Po(p) = (3u® —1)/2, and P3(p) = (50 — 3p) /2.

By
54. (a) If we substitute the Maclaurin series for e* into z = (e® — 1) <1 + Bz + —22% + - )

21
2 28 Byz?
|:<1+I+§+§+ )—1:| <1+B1£17+ 21 +)

- 22 3 xt 2 b 1+ B Boz?  Bsx®  Buz*  Bsa®
I T T T T B e TR R TR TR

When we multiply the series on the right and equate coefficients of powers of x left and right:

r:1=1
1 1
=—+B By = —=
+ 0 oy TP = 1 5
1 By  Bs
3 == - —_— —_— — —
CU=gtgty = Bs
1 Bl B2 B3
L0= o 25— By=
1 Bl Bz Bs; By 1
5 0= — 21 P2 D3 Dy By — -
! st T Tt T P TR
1 B B B3 By  Bs
0= = T o ==+ = Bs=
v 6! + +2'4'+( 31)2 +2l4|+ 5
2 —2(e” — 1 v q
(b) Suppose we set f(;c):exw_l_l_le:ezfc_l_l_i_g: x (62(896)_-1;);5(@ )
7xez—2ex+x+27B2 5 Bs 4
I T VR TR T
Since
-z T re® T
f( «T) e — 1 2 e _ 1 9
20e” —2(e* —1) —z(e” -1 zet —2e* 4+ +2
2(e* — 1) 2(er — 1)

f(z) is an even function. But the Maclaurin series for f(z) can represent an even function only if all
odd powers are absent. In other words, 0 = B3 = By =

o e L ()]

When these series are multiplied together, the coefficient of t™ is

(z/2™ | (x/2" (—=/2)  (2/2)""? (—2/2)? _ (x/2)" ™ (—x/2)™
PSR T ST mr2) 2 Z

(n4+m)! m!

- (_1)m 2m—+n __
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. The radius of convergence of the series is R = lim

n—oo

i 1‘ =1. If weset S(z Z nz™ 1, then term-

n
n=1

by-term integration gives

/S(x)dx—l—C: ix” =
n=1
(1-2)1)—=2x(-1) 1

since the series is geometric. Differentiation now gives S(z) = =

(1-2)? (1—=)*
, _ . nn—1) 3 n—2
. The radius of convergence of the series is R = lim | ———=| = 1. If we set S(z) = E n(n—1)z" "7,
n—oo (TL —+ 1)7’), oy

o0
then term-by-term integration gives / S(z)de +C = Z nz" 1. A second integration leads to
n=2

/Us<x>dx+c] dw—I—D:ix":

since the series is geometric. Differentiation now gives

1—2)(2z) — 22(—1 2z — 22
/S(x)dx—l—C:( )((1_)96)2 ( )_(1—:10)2'

A second differentiation provides S(x),

() = (1—2)%(2 —2x) — (22 — 22)2(1 — 2)(-1) _ 2
(1—a2)t (1—=)*
1 o0
. The radius of convergence of the series is R = lim nt 2‘ = 1. If we set S(z Z n+1)z" ", then
n—oo | n
n=1

oo
Z n+ 1)z". Term-by-term integration gives
n=1

oo 2
/xS(x)dx—l—C:Z:z:"'H = 130——:10’

n=1

since the series is geometric. Differentiation now gives

(1—2)(2z) —22(-1) 22 —a? 2—x
S(x) = = S(x) = —.
£ (=) (=P =iy
The radius of convergence of the series is R = li " 1. If we set S(x) 2 the
. radiu nvergen riesis R= lim | ——|=1. Ifw :r:En:z: , then
¢ oo (’I’L + 1)2 n=1

term-by-term integration gives /S(x) de+C = Z nz". When x # 0, we can divide by z,

n=1

1 C &
Z [ S@)de+ = = n=1  TIntegrati i
o / (x)dx + - Z nx ntegration now gives,

1 > " T
/[E/S(x)dx] d:z:+Cln|:1:|+D:Zx =T

n=1
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1 1-— 1) —ax(-1 1
If we now differentiate, — / S(x)dx + ¢ = (L= 2)(1) — =(=1) = . Multiplication by z
x x (1—2) (1—x2)?

and a further differentiation gives

d { x } _ (1—2)%2(1) —2(2)(1 —2)(-1) z+1

du [(1- ) (1= a) T U—a

S(x) =

Since the sum of the series at z = 0 is 1, and this is S(0), the formula S(z) = (z + 1)/(1 — z)® can be
used for all z in |z| < 1.

. If we divide the series into two parts, Z n? + 2n)z Z n?z™ 4 2 Z nz", the first series is = times

n=1 n=1 n=1
that in Exercise 4, and the second is x times that in Exercise 1. Hence,

=, o r(x+1) 2z 3z — 22
2 = = .
2 2 = e~ (e
1 1 -
. The radius of convergence of the series is R = lim Y+l =1. If weset S(z) = x", then
n—oo |1/(n+2) —n+l
xS(x) = EOO Lx"“ Term-by-term differentiation gives i[m S(x)] = OOE " = b since the
— n+1 ' dx — 1—z’

series is geometric. We now integrate,

1
xS(x):/ de =—In(1—z)+ C.
11—z
1
Substitution of z = 0 gives C' = 0, and therefore S(xz) = ——1In (1 — z). This is valid for -1 < z < 1,
x

but not at = 0. It is interesting to note, however, that the limit of S(z) as x approaches zero is 1 and
this is the sum of the series at x = 0.

. If we set y = 22, the series becomes Z 2(71—_'_)1:102""’1 = :I:\/ﬂngo 2(n _3 13/"- The radius of conver-

n=0

nr/@2n+1
gence of this series is Ry = lim (=D"/(2n+1)

Jim '( )”*1/(271—1- 3)’ = 1. The radius of convergence of the original

-1
series is therefore R, = 1. If we set S(x) = Z 2( +)1 2141 (hen termby-term differentiation gives
n
[e'e] 1 n=0
Z ) 220 — =TT since the series is geometric. Integration now gives S(z) = Tan~lz 4+ C.
n=0

Since S(0) = 0, it follows that C' = 0, and S(x) = Tan™'z.
1

00 1)
(=" 2" = Z (=1 y".  The radius of convergence of this

n=1 n=1

. If weset y = 22, the series becomes Z

1)
series is Ry = nh_)rrgo ’ (—1)("“)/({1”4— 0

R, =1. If we set S(z) = Z (=1)

n=1

= 1. The radius of convergence of the original series is therefore

22", then term-by-term differentiation gives

:i2(_ na2n—1 _ —2x
— T 1422

since the series is geometric. Integration now leads to S(z) = —In(1+ 2?) + C. Since S(0) = 0, it
follows that C' =0, and S(z) = —In (1 + z?).
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o0 o0
If we set y = 2, the series becomes Z n3"z? = Z n3"y"™.  The radius of convergence of this

n3"

series is Ry = lim W
n

n—oo

=1/3. The radius of convergence of the original series is therefore

S
= 1/v/3. If we set S(x Zn?)" 2 then ( Z n3"z*" 1, provided z # 0. Term-by-term

n=2
integration of this equation glves

S@) ,  =3" 5, 92/2
/:17 dx—Z;:v 1 —3z2’

n=2

since the series is geometric. Differentiation now gives

S() 9 {(1 — 32%)(4a%) — x4(—6x)} _ 942’ — 62°) 924(2 — 32?)

2 (1— 322)2 20— o W= g

Since the sum of the series at = 0 is 0, and this is S(0), the formula for S(z) can be used for all z in

lz| < 1/4/3.

1 2
The radius of convergence of the series is R = lim (n+1)/(n+2) = 1. If we set
n—oo|(n+2)/(n+3)
- 1 = 1
S(z) = ZO (Z i 2) 2", and integrate, /S(x) dr = ngo n——l-2 "1 4 C.  Multiplication by x gives
/ x)dr = Z "2 4 Cz. Differentiation now gives
4 x/S(:v)d:v zix"'ﬂ—i—(}': * 4o
dx = 1- ’

since the series is geometric. Integration now yields

x/S(x)dx:/l i de+Czx+D=—-x—In|l—z|+Cx+ D.
—x
If we set x = 0 in this equation we find that D = 0. When we drop absolute values and divide by =,

/S(x)dx:—l—éln(l—x)—i-c, x # 0.

1 1
When we differentiate this equation, we obtain ~ S(z) = — In (1 —xz) + a0 This formula can
T z(l—=

only be used for values of x in the interval —1 < z < 1, but not £ = 0. The sum at z =0 is 1/2.
(n+1)/n!

m = 00. If we set

The radius of convergence of the series is R = lim

- 1
S(z) = Z (n + ) 2™, and integrate,

n!

* n+l x .n
/S(x)dxzzxn! —I—C:xz%—l—C:x(ex—l)—FC.

n=1 n=1

Differentiation now gives

S(x) = (e = 1) +z(e”) = (x + 1)e” — 1.
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— (—=1)"(n+2) - 2
If we set y = 22, the series becomes E ()(2(77;'—’— n =+/y E (n + ) " The radius
n)!
n=0

(=1)"(n +2)/(2n)!
(—1)"H(n +3)/(2n + 2)!

()"0 +2)

of convergence of this series is R, = lim = oo. The radius of convergence

n—oo

of the original series is therefore R, = oo also. If we set S(z) = , and multiply by

(2n)!
— (—1)"(n +2
23, 2%8(z) = 7;0 %x%*g. Integration now gives
- "(n+2) g2t o~ ()", at
" C = "+ C == C.
/ z:: 2n+4) Te=g 7;) et " g cosTE
We now differentiate to get
3 3 ot x
x°S(z) =2z cosx—gsinx = S(:v)=2cosx—§sin:v.

o (2n + 3)2" — (2n + 3)2"
If we set y = 22, the series becomes E szn = E ﬁy” The radius of con-
n! n!
n=1

n=1
2n 4+ 3)2" /n!
vergence of this series is R, = lim (2n +3)2"/n

@n+ 527 (n 1) = 00. The radius of convergence of the
n—oo n n .

— (2n +3)2
original series is therefore R, = oo also. If we set S(z) = Z (71—’—7'):62", and multiply by z2,
n!

n=1
oo
2 _ (2n+3)2" 510 : -
xS(z) = E 1 Tm . Integration now gives
n—

o 2" 203 = 1 0
—z" C= — C= -1 +C.
[ s dr =30 T 0= 3+ O = ) ¢
We now differentiate to get

2?S(z) = 3$2(62x2 -1+ 173(43362””2) — S(z) = (422 + 3)62x2 _3

0 ~-1 n+1 m — n+1 -1
If we set y = 22, the series becomes E % =+ E 2n >y" The
n
n=0

(—1)" (20— 1)/

D2 2n+ 1)/ 2n+2 ‘ 00. The radius of con-

radius of convergence of this series is R, = lim

n—oo

— (—D)ti(2n—1
vergence of the original series is therefore R, = oo also. If we set S(z Z —n)xQ”H,
e n+1 n—1
and divide by 23, Z —):102”72, x # 0. Integration now gives

S(x) _ - (_1)n+1 2n—1 _ 1 (—1) o2n _ 1
/x3 d:v—nzzowx +C__EZ(2n)!x —I—C——Ecos:v—i—C.

We now differentiate to get

S 1 1
(f) = —cosz + —sinz = S(x) = zcosx + 2 sin .
x x x

This gives the sum of the series at = 0 also.
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2 3
. Taylor’s remainder formula for e* and ¢ =0 gives ¢* =1+ x + > + 3 + R3, where
d* x? x?
Rs = @eﬂz:zgz = ez3ﬂ, and 0 < z3 < z. Since z < 0.01, we can say that

4 0.01)4
Rs < 61% < e”l(—) =4.2x 10710,

24
2 .3
. Taylor’s remainder formula for e* and ¢ =0 gives e* =1+ z + 5 + 5 + R3, where
d* xt xt
Rs = wex‘w:zy’z = ez3ﬂ, and 0 < z3 < z. Since x < 0.01, we can say that

4 .14
R; < e” —<e°01(00) =4.2x 10710,

24 24
22 28
. Taylor’s remainder formula for e* and ¢ =0 gives ¢ =1+ x + 5 + 5 + R3, where
d* xt x4
Rs = @ex‘z:zgz =e° ﬂ and x < z3 < 0. Since —0.01 < x < 0, we can say that
olzlt _ =001 10
|Rs| < €° 24_ o =42x 107"

. According to Exercise 2, a maximum error on 0 < x < 0.01 is 4.2 x 10719, For —0.01 < z < 0,
4

Rs = ez"*% where © < z3 < 0. Since x > —0.01, it follows that

—0. 01|4
R 0 |$| | 10710.
sl <5 =5
23
. Taylor’s remainder formula for sinx and ¢ = 0 gives sinz =z — 37 + R4, where
he o o '
Ry = %sinaqmzz4 i (COSZ4) 120’ and 0 < z4 < z. Since 0 < z < 1, we can say that
( 2 1
R e <= =—.
+ <135 < T35 = o9
2?2t
. Taylor’s remainder formula for cosz and ¢ = 0 gives cosz =1 — o + o + R5, where
db x® 28 ' '
Rs = 78 COS L=z o7 = —(cos z5)— o and z5 is between 0 and z. Since |z| < 0.1, we can say that
z° _ (0.1)°
|Rs| < (1) or S g S Ldx10” 9,
. The first four derivatives of f(z) = In(1 — ) are f'(z) = —1/(1 — z), f"(z) = =1/(1 — )%, f"(z) =
—2/(1 —z)3, and f""(z) = —6/(1 — x)*. Taylor’s remainder formula for In(1 —z) and ¢ = 0 gives
4 4
In(1—2z)=—x—2%2/2—23/3+ R3(z), where R3(z) = f""(23)$— =% _and0< z < 2. Since
A1 41—zt
0 <z <0.01, we can say that
* 0.01)*
Rs| < —— < OO 7100,

41— z)* ~ 4(1—-0.01)
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8. The first four derivatives of f(z) = 1/(1 — z)® are f'(z) = 3/(1 — 2)%, f"(z) = 12/(1 — 2)5, f"(x) =
60/(1 — )%, and f""(x) = 360/(1 — x)7. Taylor’s remainder formula for 1/(1 — z)® and ¢ = 0 gives

1 x? 1524
=1+3z+4 62" +102° + R here Rg(z) = f"(23)— = ———, and 23 is bet 0
e + 3z + 62 + 102° + R3(z), where Rs(x) = f""(23) T and z3 is between
and z. Since |z| < 0.2, we can say that
15)[* 15(0.2)*
R 0.115.
|Rs < 1-027 ~(1-027 °
. . : . 923  81z°
9. Taylor’s remainder formula for sin 3z and ¢ = 0 gives sin3x = 3x — - + 10 + Rg, where
d7 7 7
Rs = wsin?):qx:zﬁ% = —3"(cos 326)%, and zg is between 0 and z. Since |z| < 7/100, we can say
that
7 100)7
|Rg| < 37(1)% < 37WT) <1l4x107,

10. The first five derivatives of f(z) = Inz are f'(x) = 1/z, f"(x) = —1/2?, f"(x) = 2/23, f"'(x) = -6/,
and f""(x) = 24/2°. Taylor’s remainder formula with ¢ = 1 gives

1 1 1
nz=(z—-1)—=(z—1)*+ =(x —1)> = —(z — 1)* + Ry,
2 3 4
Gy =1 24@-1)0° (z-1)° ) )
where Ry = [\ (24)—F"— = —¢ = =— and zy is between 1 and z. Since 1/2 <z < 3/2,
5! z3 bl 52y
we can say that
—1p 1/2)°
Ry < 210 A2°

5(1/2)> = 5(1/2)°

11. Taylor’s remainder formula for sinz gives

xS x5 dr n

sinex =x — 31 + S R %(sin:v)wzo% + R, (0, )

_ d"(sinz) ntt

where R, (0,z) = prE— CE] and z,, is between 0 and x. Therefore
X =z, (T .

sinx x x 1

When we take definite integrals,

1 1 2 4
sinx x x 1
dr = l1—-—4+——---+—-R,(0, d
/0 z /0{ 3!+5! +x ( x)] v

3 x° ! !
— e — =Ry (0,2) do,
{‘T 3.3 5.5 }0+/0:v (0,2) do
1 1 "1
S [ . S ~R,(0,z) dx.
3.3 55l +/0:v (0,7) dz
1 1dn+1 n+1 dn-i-l
Now, /—Rn(O,:E) dz S/ - (sinz) a dz. Since & (sinz) <1, it follows
0z o |T dxntl |z=2y, (n—l—l)' dxntl |z=2y,
that

/1 " J { anrl }1 1

—Qar = -_— =

~ Jo (n+1)! (n+Dn+1)!, m+1)(n+1)!

When n = 6, this is less than 0.000 029. Hence, if we approximate the integral with the first three terms,

11
/ —R,(0,z)dz| <
0 :L.

1 1
namely, 1 — 331 + T 0.946 111, then we can say that
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1 .
0.946111 — 0.000 029 < / sj%d:z: < 0.946 111 + 0.000 029;
0

1 .
that is, 0.946 082 < / %da@ < 0.946 140. To three decimals, then, the value of the integral is 0.946.
0 X

1/2 1 (/4
If we set u = 22 and du = 2x dx, then / cos (x?) dr = 3 Y g Taylor’s remainder formula
0 0 u
for cosu gives
u?  ut d™(cosu) u”
COSUZl—E-FI—"' T‘uzom-f—Rn(O,U)a
d"(cosu) untt

where R, (0,u) = . Consequently,

du"+1 ‘u:zn (n+ 1)'

/01/2608 (22) do = %/01/4% [1 B 1;_? +Z_? + R, (0 u)] du
:%/01/4{%—%{24—%;2—---—}—%}%”(0,11)] du
_ % {2\/5_ 25u_52/'2 + % _ ...}:/4 + % 01/4%Rn(0,u)du
:%_ 5.215.2! +9,21;,4! _...+% 01/4\%5}%"(0’“)%'
Now,
%/01/4%}%”(0,1;) du| < %/01/4%|Rn(0,u)|du < % 01/4%%du

1/4 1

1 U4 12 1 unt3/2
- - du = = .
2/0 (n+1)! “ 2(n 4+ 1)! {n+3/2}0 (2n + 3)(n + 1)14n+3/2

When n = 2, this is less than 1.9 x 10~%. Hence, if we approximate the integral with the first two terms,

| 1 159 L L
namely, 3 52591 320 then we can say that
159 1/2 159
—— —0.00019 )Y dr < == +0.00019
390 </0 cos (%) dx < 390 + )

1/2
that is, 0.496 685 < / cos (z%) dz < 0.497 065. To three decimals, the value of the integral is 0.497.
0

Taylor’s remainder formula for sin z gives

3 5 dr n
sinex =x — % + % — 4 %(sin:v)wzo% + R,(0,x)

d"(sinx) gt
where R, (0,2) = dz" =z, (n+1)!

and z, is between 0 and x. Therefore

rtlsing = 2! — 173_' + x5_' — o+ 2R, (0, ).

When we take definite integrals,
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1 1 p4 416
/ xllsinxdx:/ {xlz——+——--~+:z:“Rn(0,x)} dx

) . 3 5l
213 RE 217 1 1 u
= - = 4+ = .. R, (0,z) dx,
{13 1531 1751 }1+/_1x (0 de
2 2 2 ! 11
_2 2 . R, (0, ) da.
13 15-3!+17-5! +L1I (0,2) dz

Now

11 d" T (sinx) zntl
dz"tl jg=z, (n + 1)!

1 1 |xn+12|
S/ T d:vg/ 'dx
-1 _1(n+1)!

2 /1 n+12 4 2 RAS 2
= x xr = = .
(n+1)!J (n+1)! n+13f, (+13)(n+1)!

1
‘/ 2" R, (0,2) dx
-1

When n = 6, this is less than 2.1 x 107°. Hence, if we approximate the integral with the first three

terms, namely, — = 0.132604, then we can say that

13 1531 T 175!
1

0.132604 — 0.000 021 < / zM sinz dr < 0.132604 + 0.000 021,
-1

1

that is, 0.132583 < / ' sinz dr < 0.132625. To three decimals, the value of the integral is 0.133.
-1

0.3 0.09 —
1 w
14. If we set w = z? and dw = 2z dx, then / e~ dy = 3 € dw. Taylor’s remainder formula
0 0 w
applied to e™" gives
o ’LU2 ’LU3 (_1)nwn
dnJrl Cw wnJrl (_1)n+187wnwn+1
where R, (0,w) = W(e ) lw=w, i) = ED) . Consequently,

0.3 2 1 0.09 1 U)2 ’LU3 (_1)nwn
“Tdx = = — |1 - — — — 4+ —— 4+ R,(0, d
/0 e =g N { w+ ' +- 4 oy + Ry ( w)} w

0 21 3l
1 0.09 1 w3/2 ’LU5/2 (_1)nwn71/2 1
= — _ - _ e - 7/ 00000 _Rn O7 d
2/0 L/@—U e e T Y w)} v
1 2w3/2 /2 2wT/? 21 t1/279%0 0.09 B (0
=—-<J{2V/w— w + w2 +...+% _/ (’w)dw
2 3 5.20 7.3 Cn+nl [, 2/ Vw
0.09)3/2  (0.09)5/2  (0.09)7/2 —1)"(0.09)*t1/2 1 99 R (0,
T L ) e LD R . XAl SO P
3 52! 73! (2n + 1)n! 2Jo Vw
Now,
0.09 0.09 i\t —wn, 1 0.09
E Ln(o,w) dw| < L L (=)™ e w = - / e Wt 2 duy.
2 /o Vw 2), Vw (n+1)! 2(n+ 1) Jo

Since 0 < w, < w < 0.09, we can say e~ *“» < 1. Thus,

0.09 n+3/2 Y 0-09 n+3/2
/ R, (0,w) dw} < 1 {Zw } _ (0.09)
0 0

Vw “2n+1)! | 2n+3 (2n+3)(n+ 1)

1
2
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When n = 2, this is less than 3.0 x 107%. Hence, if we approximate the integral with the first three

0.09)%/2  (0.09)>/2
terms, namely, v0.09 — ( 3) + ( 5 ;

= 0.291 243, then we can say that

0.3
0.291 243 — 0.000 003 < / e~ dz < 0.291 243 + 0.000 003,
0

0.3
that is, 0.291 240 < / e~ dz < 0.291246. To three decimals, the value of the integral is 0.291.
0

t 2 2 4
Using the result of Example 10.24, lim 80T _ lim (1 n % + 1—3; +- ) ~ 1.
xr— x

I 1—cos:1:71, 1 . . :1:2+:1:4 _ 1 1 x2+ 1
a0 22 anb a2 2 4l Tl \21 T Al T2

1— 2 1 2 4 2 1 2 4 2
1imﬂ_lim—[1—<l—x—+x——--->} = li <x _x__|_...)

21 gl 200 324

I 1 zt b n I 1 x2 n 1
= 11m —- T — e = [1m _ “ e = —,

 VIFz-1 1 z (1/2)(-1/2) , e 1
i S i (1 g = B ) i e e = 5
. . 1 . 1 1 1 . 1 1
Jingom(;)=£Lﬂ3£(;‘m?*@"">23520(1——3!952+—5!x4—---)=1
(—22)> | (-22)° , 423
e””—l—e””l—l—ele—i_{l 20t 2! + 3! * 72_2954'295 _?"""'
e —em?  l-e7i (207 (~20)° - , 42
1—|1—-2x+ + 4+ 2Qp — 22+ ...
2! 3! 3
X —T 1
Long division gives e e _ —+E+..
et —e ™ x 3

Thus, lim (i—l>:hm l+5+--->—1]=0.

—0\et —e T g z—0 |\ xz 3

Taylor’s remainder formula for sin (z/3) gives

. T x3 x5 z’ ar .. "
sin (z/3) = FREERET + .5 370 +ee %[Sln (m/3)]|xzom + R, (0,2)
~d"[sin (x/3)] !

and z, is between 0 and . Since the (n+ 1) derivative

where 2,0, 7) dz" T o, (n + 1)
of sin (z/3) is £37" L sin (z/3) or £37" 1 cos (z/3), and |z| < 4, it follows that
|x|n+1 4n+1

B (0, 2)] 3ntli(n+ 1)1 — 3ntl(n 4 1)!

The smallest integer for which this is less than 1073 is n = 7. Thus, the series should be truncated after
27/(37- 7).
We set u = % and consider the function f(u) = 1/4/1+ u on the interval 0 < u < 1/8. Since the n'!

derivative of f(u) is f(") (u) = (_1)n2[,11(13+i)n+(12/2 =b))

, Taylor’s remainder formula gives

w  3u?  5ud (-D)"[1-3-5---(2n—1)]
=l-ct+————=+" " n(U, 1),
f(u) 5 + 3 16 + -+ Sl u” + R, (0,u)
f(n+l)(2n)

where R, (0,u) = u"tt and 0 < 2, < u. Since 0 < u < 1/8, we can say that

(n+1)!



23.

24.

25.
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[ R (0, u)|

. 1-3-5---(2n+1) i 1-3-5---(2n+1) -
= o+ a2 1 P+ 052+ 1
1-3-5---(2n4+1) (1\""" 1.3.5---(2n+1)
27+ (n 4+ 1)! <_) T 2indi(p 4 1)

8

The smallest integer for which this is less than 10~% is n = 3. Thus, we should approximate 1/v/1 + u
with 1 —u/2 + 3u?/8 — 5u3/16, or approximate 1/+/1 + 23 with

A A
2 8 16
Since the n'" derivative of f(z) =In (1 — ) is f™(z) = —(n—1)!/(1 — x)", Taylor’s remainder formula
gives
2?2 23 2t "
f(x):—x—g—g—z ———— ;+Rn(07$)7
B f(nJrl)(Zn) il _n!anrl B _anrl ]
where R, (0,z) = Waz S AN DA and z,, is between 0 and
x. Since |z] < 1/3, we can say that
n+1 n+1 1 3 n+1 1
R0 = " __ G

(n+ D1 =2zt " (n+ D1 —1/37t1 "~ (n+1)(2/3)7t1  (n+1)2n+1°
The smallest integer for which this is less than 1072 is n = 4. Thus, we should approximate In (1 — )
with —z — 22/2 — 23/3 — 2% /4.
Taylor’s remainder formula for cos? z = (1 + cos2z)/2 gives

1 1 92,2 Qdg 4 (0

o4 R 0,0)) |

4 (n)
(n+1)
where R, (0,z) = JC(T%T):E"H and 2, is between 0 and z. Since the (n + 1) derivative of f(x) is
n !

+2"% 1 5in 22 or 42" cos 2z, and |x| < 0.1, it follows that

1 2n+1|x|n+l on
ZIR,(0,7)| < .
2 Fn0: 0 < ST < o

The smallest integer for which this is less than 1072 is n = 2. Thus, the function should be approximated
by 1 — z2.
If we substitute y = f(z) = >~ ;anz™ into the differential equation,

oo o0 oo oo
0= —4+ Z 3a,x"™ + Z na,z” ' = -4+ Z 3a,z" + Z (n+ Dapp12™
n=0 n=0

n=0 n=0

o0
= (—4+43ap+a1) + Z [Ban + (n+ Dagpi1]a™.
n=1
When we equate coefficients to zero:

—4+4+3ap+a1 =0 and 3a,+ (n+1)ap1 =0, n>1.

—3an >1
n .

The first implies that a3 = 4 — 3ag and the second gives the recursive formula a,11 =

Iteration leads to



EXERCISES 10.7 599

o 3m_ -3(4-3a) _ B3ay _(4-3a) _ 3a3 __3°(4-3ac)
2 = 2 2 ) 3= 3 = o 7 = = - |
Thus,
3(4-3 32(4—3
y = F(@) = a0 + (4 — 3ag)z — . an) o 3% - a) 4
- (4 — 3ao) (3z)2  (3xz)3
_ (4 — 3ap) L 4 (Bag—4) _g,
=ap+ 3 (1 e )_3+ 3 e '

26. If we substitute y = f(z) = >_,°  a,2" into the differential equation,

oo o0 o0
Z n(n —1)a,z" 2 + Z na,x" " = Z (n 4 D)napz" "t + Z na,x"
n=0 n=1

n=1

o0
Z n 4 Dna,1 + naylz™ "t
n=1

When we equate coefficients to zero:

Qn

1 n n — 0 - n I > 1.
(n+ Dnant1 + na Gnt1 e R
This recursive definition implies that
aq as ay as a1
ao = —— Qa = —— = — agr = —— = ——
S T TR Al
22 23 gt n+1

Thus, y=f(z)=ao+a; (w—i—i—g—z—i—---) —ao—i-alz

=ap—a1(e™® —1)=(ap+a1) —are” ™.

27. If we substitute y = f(z) = Y.~ , a,z™ into the differential equation,

0=—3x— Z da,x” + Z napz” = —4dag + (=3 — 4a; + a1)x + Z (n—4)anz"™.

n=2
When we equate coefficients to zero:
ap =0, —3—3a; =0, (n—4)a, =0, n>2.
These imply that a; = —1, a4 is undetermined, and all other coefficients vanish. Thus, y = f(z) =
—x + a4a:4.
28. If we substitute y = f(z) = " a,z" into the differential equation,
o0 o0 o0
0 =4x Z n(n — 1)anx"_2 + 2 Z na,z" ! + Z anpx”
n=0 n=0 n=0

o0 oo oo
— Z 4n(n — Daz™ "t + Z 2nanz” "t + Z anx”
n=0 n=0 n=0
o0 oo oo
= Z dn(n — 1apz™ t + Z 2nanz™ ! + Z gzt
n=2 n=1 n=1

= (2a1 + ap) + Z [(4n? — 4n + 2n)ay + an_q]z™ "
n=2
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We now equate coefficients of powers of 2 to zero. From the coefficient of 2% we obtain 2a; +ag = 0

which implies that a; = —ao/2. From the remaining coefficients, we obtain
—ap1
4n? —2 =0 = =" > 2.
(4n n)an + an-1 an 5n(n — 1) n >
When we iterate this recursive definition:
—ai an —as an
ay — —— — — Q= — = ——
T43 4 P65 6l

2 3 0 —1)"
The solution is therefore y = f(x) = ao (1 I,z .z —i—) ZGOZ (=1) x™.

2 "4 6l 2 (2n))
. If we substitute y = f(z) = > 7 ;anz™ into the differential equation,
0= Z n(n — Da,z™ 2 + Z anx" = Z (n+2)(n+ Dapq2z™ + Z anx"
n=0 n=0 n=0 n=0

- Z [(n+2)(n+ Dani2 + ay]z”
n=0

When we equate coefficients of powers of x to zero, we obtain the recursive formula
—a,
a =——— n>0.
Iteration gives
ap ap ap
57 a4 = —~ ag = ——r e, and as =

41’ 6!’

The solution is therefore

ag = —

z? ozt 3 b
y=f(z)=ao (1—54—?—---)—}—@1 (w—g—i———---) =aqapcosx + apsinz.

. If we substitute y = f(z) = >~ , ana™ into the differential equation,

0=z i n(n — Da,a™ 2 + i anz" = i n(n — Da,z" ' + i anx”
n=0 n=0

:Z n—lanxnl—l—Zan 1z —ao—i-z (n —1)an + an_1]z" 1.
n=2 n=1

We now equate coefficients of powers of  to zero. From the coefficient of z° we obtain ag = 0. From
the remaining coefficients, we obtain

—On—1

—1 n n—1 = O == n = —F v, Z 2.
n(n — Day, + ap—1 a 2= n
When we iterate this recursive definition:
—ai —a2 ai —as —aq
as = —— a3 = —— = —— a) = — = ——
T 21 P32 ey YT 43 4sv

The solution is therefore

2 3 4

x x x yntt
y:f(,’E)ZCLl(,CE———i-?" 2' 3] ..)—alzn'n_l
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31. According to Exercise 23, Taylor’s remainder formula for In (1 — z) is

I2 _In-i-l
In(l—2)=—-z— 5 + R,(0,z), where R,(0,x) = ED =
2
and zy, is between 0 and z. The maximum error when only the first term is used is Ry (0, z) = =)
—

If we set x = 0.000 000000 1, then z; < 0.000000 000 1, and we can say that

(0.000 000 000 1)?

3.4 x 1072
2(0.9999999999)2 ~

|R1(0,0.0000000001)| <

—10719, and this is definitely accurate to more than 15 decimal places.

A

32. K =c*(m—mg) = c*myg (\/llvw - 1)
:m{ ll .y (__) . w (__) L (1/2)(=3/2)(=5/2) (__)+

c? 3! c?
9 vi 3t 5 S 1 9 o (3vt 5 b
=c"mg + + +ee = 5Mmov +moc” | o+ +ee

2¢2 8¢t 165 8ct 165
33. Using the binomial expansion,
Py k k-1 9 kM?
0 4 MZ24...=1
Pt (ph) () m e g

34. When we expand Ps/Py with the binomial expansion,
P k k—1 1/ k k k—1\>
o [/ ) (e ) 2o () (1) (=) Mg
ro () (555 (65) - (55)
1/ k& k k E-1\*
W(m) (m*) (m”) (T) Mo+

ke ko BR-F) 6

=1 DM+ A g

Ly (pocg 1 (pocg 1 Poct
_1+2M0<P0 M (R ) F MR ()

Multiplication by Py, and replacement of Mg by ViZ/c2 in the last three terms gives

1 2 V02 1 2 ‘/02 2 1 2 ‘/02 4
Py = Po + 5poch (g + gPoco @ My + 552 = k)pocy @ My +---

1 1 1
=P+ §P0V02 + gpoVong + 4—8(2 — k)poVi Mg + -+
_ 1 9 M02 2—k 4
—P0+§p0VO |:1+T+(T>MO+ .

35. (a) Using formula 9.3, the length of the ellipse is four times that in the first quadrant,

/2 /2 a2 /2
L:4/ \/(—asint)2+(bcost)2dt=4b/ —sin2t+(1—sin2t)dt:4b/ V1 — Ek2sin t dt,
0 0 0

b2

where k? = 1 — a?/b%.
(b) If we expand the integrand with the binomial expansion 10.33b, and integrate term-by-term,
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T2 1/2)(—1/2
L:4b/ 1+§(—k2sin2t)+7( / )(2 /)(—k251n2t)2+...] dt

o L
w/2 [ 2 _ 4 _ 2

:4b/ 1_k_ 1 — cos2t _k_ 1 — cos2t n gt
o 2 2 8 2
T/2 T k2 k4 1 At

=4b/0 1—1(1—60521%)—@(1—2c082t++c%)+---]dt

pds K[, sin2t) K (3t nop o S0AT) /2
= - — |t - —— | = —sin .
4 2 32\ 2 8 o
r k2 m k* (37
[5‘1(5)‘@(?)*'}
2 4
_27rb<1—k _%+.-.).

4 64
36. (a) If we substitute —6%/(dom) i ! Y e obtai
. we substitute e = — | —— wi in
o n! dox )’

W( 6) /oo 1 _ami 1 62 nd i 1 62 n/oo e—amd i (_1)n62nE ( )
a, ) = —e — [ —— T = — | —— T = ~————F,1(a).

’ 1T — n! daz “— nl 4oy ;. xntl = Arannl i

(b) We use integration by parts with u = e~** and dv = e,
x
e e e 1 e a [Te ™
E, = ——dr =< — — ——(—a)e ¥ dx = — — — d
(@) /1 g1 { na" }1 /1 nx"( aje . n n/l an
1
= Z[e=® — aEp(a)].
Lo — aBa(0)
37. If we substitute the Maclaurin series for e¢*/(AFT)
8mchA~> 8mch 8mch

W) = 7T62 _ _ 7T62 i _ Zcz '

14 ch+ c“h n Y ch+ c“h n ch/\4+ch 3

AT 2X02k2T2 AKT  202k2T2 kT 2k2T2

If we long divide the denominator into the numerator, the result is

8TkT
T
Thus, for large A, ¥(\) can be approximated by 87kT /\%.

-2 -2
. q q q d d
38. (a) We write £ = i 7 = Treos? l(l - %> - (1 + %) ]
Ameqr? (1 — 2—) Ameqr? (1 + )

U(N) + terms in A7%, A76, etc..

2x

(b) If we expand each term with the binomial expansion 10.33b,

e eta(fa() ][]}

When d is very much less than z, we omit higher order terms in d/z, and write

q d d qd
Ex—1 (142 14%)=_9
dmegr? < + x + :v) 2mega
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w

10.
11.
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The cross-sectional area of the liquid is the area of the sector less the area of the triangle above it,

_ 1. 1 . 0\ R? :
A= gR 0—2 (5) <R81n§> <RCOS§> = 7(0—51119).

Since d = 2Rsing and h=R — Rcosg,

hd = 2Rsing (R— Rcos%) = R? (2sing —sin@) .

The required ratio is

R
A — (0 —sind) 0 — sin 6

hd R? (2 sin g — sin 9) 2 (2 sin g —sin 9)

If we expand the sine functions in their Maclaurin series

63 6°
4 9_(9_§+§_.-.)
hd 0 (0/2° (0/2)° 6 0°
2[2(5‘ s s ) U myte
0 6°
35
=@ (and by long division)
T e
N
30120
For small 6, we can use the approximatio 2—!—92
I Sm we can u roximation — ~ -+ —.
’ P hd 37" 120

EXERCISES 10.8

True If a sequence satisfies 10.35a, then it satisfies 10.35b; that is, every increasing sequence is non-
decreasing.

False The sequence {n} is increasing but has no upper bound.

True The first term of an increasing sequence is a lower bound.

False The sequence {—n} is decreasing but has no lower bound.

False The sequence {n} is increasing with lower bound 1, but it does not have a limit.

True An increasing sequence has a lower bound. If it also has an upper bound, then it has a limit
according to Theorem 10.7.

False The sequence {(—1)"} does not converge, but its terms are all 1.

True For a sequence to be increasing and decreasing, its terms would have to satisfy ¢,+1 > ¢, and
Cnt1 < ¢y for all n. This is impossible.

True The sequence {1} is an example.
True This is part of the corollary to Theorem 10.7.
False The sequence {(—1)"/n} is bounded and has limit 0, but it is not monotonic.

False The sequence {(—1)"/n} is bounded, not monotonic, and it has limit 0.



