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10 1. Find the interval of convergence for the series
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Justify all conclusions.
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When we set y = (x + 3)2, the series becomes Z Ty ly”. The radius of convergence of this
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Hence, R, =1/ V/3, and the open interval of convergence is
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At the end points, the series becomes

[e%e) 23n 1 2n [e%e) 2
Ay (RS R L
211\ V3 n? 11

n
Since lim o i 1, this series diverges by the n'P-term test. The interval of convergence is
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therefore -3 — — <z < -3+ —.
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5 2. Determine whether the series
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converges or diverges. Justify your answer. If the series converges, find its sum.
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Since we can write the series in the form g — <——> , we see that it is geometric with common
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ratio —2/e. Since this is between —1 and 1, the series converges, and has sum
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5 3. Find the limit of the sequence of functions {
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exists. If the limit does not exist, explain why not.

} on the interval —2 < z < 0, if it

. n?xd+na?+5 . a3+ a?/n+5/n2 2 1
lim = lim ==
n—oo  2n2x3 43 n—oo 213 4 3/n? 223 2

provided x # 0. At = = 0, terms in the sequence are all equal to 5/3 so that the limit at x = 0 is
5/3. Thus,

n2x3+nx2+5_{1/2, -2<zx<0

nlLII;O 2n2x3 +3 o 5/3, xr =0.

4. You are given that the Taylor remainder about x = 0 for a function f(x) on the interval 0 < z < 2
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Show that lim R, (0,z) = 0. Explain your reasoning.
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|R,(0,z)| = [nl " where 0 < 2z, < z < 2.
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smallest when z,, is largest, we can say that
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Since the numerator of is largest when |z,| is largest, and the denominator |5 — z,|" is
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This approaches 0 as n — co. Hence,

lim R,(0,z) = 0.
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5. Find the Taylor series about x = —2 for the function
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Write your answer in sigma notation simplified as much as possible. You must use a method that
guarantees that the series converges to the function. What is the radius of convergence of the
series?
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Thus,
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This is valid for |z + 2| < 1 which implies that the radius of convergence is 1.



