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Values
14 1. Find the interval of convergence for the series
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Justify all conclusions.
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Hence, R, = \/3, and the open interval of convergence is -V3<zx+1< \/3, or —1—vV3<zx<
—1 4+ /3. At the end points, the series becomes
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Since lim,, ., v/12/3 = 0o, the series diverges (by the n'"-term test). The interval of convergence
is therefore —1 — V3 <z < -1+ 3
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2. Find the interval of convergence and the sum of the series
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The series converges for
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—00 < x < 00.
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3. Find the Taylor series of the function
x

fz) = 4dr+ 3

about x = 2. Write your answer in sigma notation simplified as much as possible. You must
use a method that guarantees that the series converges to the function. What is the radius of

convergence of the series?

Long division gives
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Since the series is valid for
1< 4( 2) <1 — =
11 1

the radius of convergence is 11/4.
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4 If a > 1 is a constant, determine whether the the sequence of functions
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has a limit on the interval 0 < z < 14.

When we divide all terme by a™,
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provided z # 0. When x = 0,
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Thus,
. _Jx/a, O0<zx<14
i fo(z) = { 1/10, x=0.

5. Find, if possible, an example of a power series in powers of x+5 that has open interval of convergence
—20 < x < 11. If it is not possible, explain why not.

This is not possible. The centre of the interval is x = —4.5. It should be x = —5 for a power series
in x4+ 5.



