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CHAPTER 5 APPLICATIONS OF LINEAR DIFFERENTIAL EQUATIONS

In Chapter 3 we saw that a single differential equation can model many different
situations. The linear second-order differential equation, to which we paid so much
attention in Chapter 4, represents so many applications, it is undoubtedly the most
widely used differential equation in applied mathematics, the physical sciences, and
engineering. We concentrate on one of these applications in the first three sections of
this chapter, vibrations of masses on the ends of springs. Simplistic as this situation
may seem, it serves as a beginning model for many complicated vibrating systems.
In addition, whatever results we discover about vibrating mass-spring systems can
be interpreted in other physical systems described by linear second-order differential
equations. One such is LCR circuits.

5.1 Vibrating Mass-Spring Systems

Consider the situation in Figure 5.1 of a spring attached to a solid wall on one end
and a mass of M kilograms on the other. If the mass is set into horizontal motion
along the axis of the spring it will continue to do so for some time. The nature of
the motion depends on a number of factors such as the tightness of the spring, the
amount of mass, whether there is friction between the mass and the surface along
which it slides, whether there is friction between the mass and the medium in which
it slides, and whether there are any other forces acting on the mass. In this and
the next two sections we model this situation with linear second-order differential
equations.
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Our objective is to predict the position of the mass at any given time, knowing
the forces acting on the mass, and how motion is initiated. We begin by establishing
a means by which to identify the position of the mass. Most convenient is to let x
(in metres) represent the position of the mass relative to the position that it would
occupy were the spring unstretched and uncompressed, called the equilibrium
position (Figure 5.2). We shall then look for x as a function of time t, taking
t = 0 at the instant that motion is initiated. To determine the differential equation
describing oscillations of the mass, we analyze the forces acting on the mass when
it is at position x. First there is the spring. Hooke’s Law states that when a spring
is stretched, the force exerted by the spring in an attempt to restore itself to an
unstretched position is proportional to the amount of stretch in the spring. Since
x not only identifies the position of the mass, but also represents the stretch in
the spring, it follows that the restoring force exerted by the spring on the mass at
position x is −kx, where k > 0 is the constant of proportionality, called the spring
constant, with units of Newtons per metre. The negative sign indicates that the
force is to the left when x is positive and the spring is stretched. In a compressed
situation, the spring force should be positive (to the right). This is indeed the case,
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because with compression, x is negative, and therefore −kx is positive.
In many vibration problems, there is a damping force, a force opposing motion

that has magnitude directly proportional to the velocity of the mass. It might be
a result of air friction with the mass, or it might be due to a mechanical device
like a shock absorber on a car, or a combination of such forces. Damping forces
are modelled by what is called a dashpot; it is shown in (Figure 5.3). Because
damping forces are proportional to velocity, and velocity is given by dx/dt, they can
be represented in the form −β(dx/dt), where β > 0 is a constant. The negative sign
accounts for the fact that damping forces oppose motion; they are in the opposite
direction to velocity.
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There could be other forces that act on the mass; they could depend on both
the position of the mass and time. In the event that they depend only on time,
we denote them by F (t). (If they depend on position, the resulting differential
equation could be nonlinear.) The total force acting on the mass is therefore −kx−
β(dx/dt) + F (t). According to Newton’s second law, this force is equal to mass
M times acceleration (at least when M is constant). In addition, we are assuming
that the spring itself is so light, in comparison to M , that it can be ignored in the
formulation of Newton’s second law. Since acceleration is the second derivative of
the displacement or position function, d2x/dt2, we can write that

−kx − β
dx

dt
+ F (t) = M

d2x

dt2
. (5.1)

When this equation is rearranged into the form,

M
d2x

dt2
+ β

dx

dt
+ kx = F (t), (5.2)

we have a linear, second-order differential equation for the position function x(t).
The equation is homogeneous or nonhomogeneous depending on whether forces
other than the spring and damping act on the mass. In this section and the next,
we consider situations in which these are the only two forces acting on the mass; the
presence of periodic forces in Section 5.3 leads to the extremely important concept
of resonance.

It is perhaps worthwhile pointing out that nonhomogeneity F (t) can arise in
other ways, besides the application of other forces on the mass. Suppose, for in-
stance, that the left end of the spring is attached to a support that is not stationary,
but moves so that its position, relative to its position when the mass is at its equi-
librium position and the spring is unstretched, is z = f(t) (Figure 5.4). This does
not affect the damping force (since it is a function of velocity, not position), but it
does affect the spring force.
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When the mass is at position x relative to its equilibrium position, the stretch in
the spring is x − z. Newton’s second law now gives

M
d2x

dt2
= −k(x − z) − β

dx

dt
, (5.3)

from which

M
d2x

dt2
+ β

dx

dt
+ kx = kf(t). (5.4)

Except for the k factor on the right, this is equation 5.2, but in equation 5.4, f(t)
is not a force.

Before considering specific situations, we show that when masses are suspended
vertically from springs, their motion is also governed by equation 5.2. To describe
the position of the mass M in Figure 5.5 as a function of time t, we need a vertical
coordinate system.
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There are two natural places to choose the origin. One is to choose y = 0 at the
position of M when the spring is unstretched. Suppose we do this and choose y as
positive upward. When M is a distance y away from the origin, the restoring force of
the spring is −ky. In addition, if g = 9.81 is the acceleration due to gravity, then the
force of gravity on M is −Mg. In the presence of damping forces or a dashpot, there
is a force of the form −β(dy/dt), where β is a positive constant. If F (t) represents all
other forces acting on M , then the total force on M is −ky−Mg−β(dy/dt)+F (t),
and Newton’s second law for the acceleration of M gives
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−ky − Mg − β
dy

dt
+ F (t) = M

d2y

dt2
.

Consequently, the differential equation that determines the position y(t) of M rel-
ative to its position when the spring is the unstretched is

M
d2y

dt2
+ β

dy

dt
+ ky = −Mg + F (t). (5.5)

An alternative for describing vertical oscillations is to attach M to the spring
and slowly lower M until it reaches an equilibrium position. At this position, the
restoring force of the spring is exactly equal to the force of gravity on the mass,
and the mass, left by itself, remains motionless. If s > 0 is the amount of stretch in
the spring at equilibrium, and g = 9.81 is the acceleration due to gravity, then at
equilibrium

ks − Mg = 0. (5.6)

Suppose we take the equilibrium position as x = 0 and x as positive upward
(Figure 5.6). When M is a distance x away from its equilibrium position, the
restoring force of the spring on M is k(s−x). The force of gravity remains as −Mg,
and the damping force is −β(dx/dt). If F (t) accounts for any other forces acting
on M , Newton’s second law implies that

M
d2x

dt2
= k(s− x) − Mg − β

dx

dt
+ F (t),

or,

M
d2x

dt2
+ β

dx

dt
+ kx = −Mg + ks + F (t).

But according to equation 5.6, ks − Mg = 0, and hence

M
d2x

dt2
+ β

dx

dt
+ kx = F (t). (5.7)

This differential equation describes displacement x(t) of M relative to the equilib-
rium position of M .

Equations 5.5 and 5.7 are both linear second-order differential equations with
constant coefficients. The advantage of equation 5.7 is that nonhomogeneity −Mg
is absent, and this is simply due to a convenient choice of dependent variable (x as
opposed to y). Physically, there are two parts to the spring force k(s − x); a part
ks and a part −kx. Gravity is always acting on M , and that part ks of the spring
force is counteracting gravity in an attempt to restore the spring to its unstretched
position. Because these forces always cancel, we might just as well eliminate both
of them from our discussion. This leaves −kx, and we therefore interpret −kx as
the spring force attempting to restore the mass to its equilibrium position.

If we choose equation 5.7 to describe vertical oscillations (and this equation
is usually chosen over 5.5), we must remember three things: x is measured from
equilibrium, −kx is the spring force attempting to restore M to its equilibrium
position, and gravity has been taken into account.

Equation 5.7 for vertical oscillations and equation 5.2 for horizontal oscillations
are identical; we have the same differential equation describing both types of os-
cillations. In both cases, x measures the distance of the mass from its equilibrium
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position. In the horizontal case, this is from the position of the mass when the spring
is unstretched; in the vertical case, this is from the position of the mass where it
hangs motionless at the end of the spring.

There are three basic ways to initiate motion. First, we can move the mass
away from its equilibrium position and then release it, giving it a nonzero initial
displacement but zero initial velocity. Secondly, we can strike the mass at the equi-
librium position, imparting a nonzero initial velocity but zero initial displacement.
And finally, we can give the mass both a nonzero initial displacement and a nonzero
initial velocity. Each of these methods adds two initial conditions to the differential
equation.

Undamped, Unforced Vibrations

In the remainder of this section, we begin our studies with undamped (β = 0),
unforced (F (t) = 0) vibrations. We begin with two numerical examples, and finish
with a general discussion.

Example 5.1 A 2-kilogram mass is suspended vertically from a spring with constant 32 newtons
per metre. The mass is raised 10 centimetres above its equilibrium position and
then released. If damping is ignored, find the position of the mass as a function of
time.

Solution If we choose x = 0 at the equilibrium position of the mass and x positive
upward, differential equation 5.7 for the displacement x(t) of the mass becomes

2
d2x

dt2
+ 32x = 0, or,

d2x

dt2
+ 16x = 0,

along with the initial conditions x(0) = 1/10, x′(0) = 0. The auxiliary equation
m2 + 16 = 0 has solutions m = ±4i. Consequently,

x(t) = C1 cos 4t + C2 sin 4t.

The initial conditions require

1/10 = x(0) = C1, 0 = x′(0) = 4C2.

Thus,

x(t) =
1
10

cos 4t m.

The graph of this function in Figure 5.7
illustrates that the mass oscillates about
its equilibrium position forever. This is
a direct result of the fact that damping
has been ignored. The mass oscillates up

x

t2 4 6

0.1

-0.1

and down from a position 10 cm above the Figure 5.7
equilibrium position to a position 10 cm
below the equilibrium position. We call 10 cm the amplitude of the oscillations.
It takes 2π/4 = π/2 seconds to complete one full oscillation, and we call this the
period of the oscillations. The frequency of the oscillations is the number of
oscillations that take place each second and this is the reciprocal of the period,
namely 2/π Hz (hertz). Oscillations of this kind are called simple harmonic
motion.•
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The spring in this example might be called “loose”. We can see this from
equation 5.6. Substitution of M = 2, k = 32, and g = 9.81 gives s = 0.61 metres;
that is, with a 2 kilogram mass suspended at rest from the spring there is a stretch
of 61 centimetres. The period of oscillations π/2 is quite long and the frequency of
oscillations is small 2/π. Contrast this with the much stiffer spring in the following
example.

Example 5.2 The 2-kilogram mass in Example 5.1 is suspended vertically from a spring with
constant 3200 newtons per metre. The mass is raised 10 centimetres above its
equilibrium position and given an initial velocity of 2 metres per second downward.
If damping is ignored, find the position of the mass as a function of time.

Solution The differential equation governing motion is

2
d2x

dt2
+ 3200x = 0, or,

d2x

dt2
+ 1600x = 0,

along with the initial conditions x(0) = 1/10, x′(0) = −2. The auxiliary equation
m2 + 1600 = 0 has solutions m = ±40i. Consequently,

x(t) = C1 cos 40t + C2 sin 40t.

The initial conditions require

1/10 = x(0) = C1, −2 = x′(0) = 40C2.

Thus,

x(t) =
1
10

cos 40t − 1
20

sin 40t m.

It is often more convenient to express this function in the form A sin (40t + φ). To
find A and φ, we set

1
10

cos 40t − 1
20

sin 40t = A sin (40t + φ) = A[sin 40t cosφ + cos 40t sinφ].

Because sin 40t and cos 40t are linearly independent functions, we equate coefficients
to obtain

1
10

= A sin φ,
−1
20

= A cosφ.

When these are squared and added,

1
100

+
1

400
= A2 =⇒ A =

√
5

20
.

It now follows that φ must satisfy the equations

1
10

=
√

5
20

sinφ,
−1
20

=
√

5
20

cosφ.

The smallest positive angle satisfying these is φ = 2.03 radians. The position
function of the mass is therefore

x(t) =
√

5
20

sin (40t + 2.03) m,
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a graph of which is shown in Figure 5.8.
The amplitude

√
5/20 of the oscillations is

slightly larger than that in Example 5.1
due to the fact that the mass was given not
only an initial displacement of 10 cm, but
also an initial velocity. The spring, with

x

t

-0.1

0.2 0.4 0.6

0.1

constant k = 3200, is one hundred times Figure 5.8
as tight as that in Example 5.1. The result
is a period π/20 s for the oscillations, one-tenth that in Example 5.1, and ten times
as many oscillations per second (frequency is 20/π Hz).•

General Discussion of Undamped, Unforced Oscillations

When vibrations of a mass M attached to a spring with constant k are unforced
and undamped, the differential equation describing displacements x(t) of the mass
relative to its equilibrium position is

M
d2x

dt2
+ kx = 0. (5.8)

Because the auxiliary equation Mm2+k = 0 has solutions m = ±
√

k/Mi, a general
solution of the differential equation is

x(t) = C1 cos

√
k

M
t + C2 sin

√
k

M
t. (5.9)

This is simple harmonic motion that once again we prefer to write in the form

x(t) = A sin

(√
k

M
t + φ

)
, (5.10a)

where the amplitude is given by

A =
√

C2
1 + C2

2 , (5.10b)

and angle φ is defined by the equations

sinφ =
C1

A
and cosφ =

C2

A
. (5.10c)

Quantity
√

k/M , often denoted by ω, is called the angular frequency for the mo-

tion. When divided by 2π,
ω

2π
=

√
k/M

2π
, is the frequency of the oscillations, the

number of oscillations that the mass makes each second. Its inverse
2π

ω
=

2π√
k/M

is

the period of the oscillations, the length of time for the mass to make one complete
oscillation. Each of these quantities depends only on the mass M and the spring
constant k, not on the initial displacement nor the initial velocity of the mass. No-
tice that frequency increases with k, indicating that stiffer springs produce faster
oscillations. Frequency decreases with M so that heavier masses oscillate more
slowly than lighter ones.
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Initial conditions enter the calculation of the amplitude of the oscillations and
angle φ. For instance, if the initial displacement and velocity (at time t = 0) are x0

and v0, then C1 and C2 must satisfy the equations

x0 = C1 and v0 =

√
k

M
C2 = ωC2.

With these initial conditions,

x(t) = A sin (ωt + φ), (5.11a)

where

A =

√
x2

0 +
v2
0

ω2
, (5.11b)

and φ is given by

sinφ =
x0

A
and cosφ =

v0/ω

A
. (5.11c)

The amplitude of the oscillations is constant because without damping, there is no
release of the initial energy supplied to the system with the initial displacement
and velocity. Angle φ is often called the phase angle or angular phase shift.
Quantity −φ/ω is called the phase shift as it represents the shift in time of the
graph of A sin (ωt + φ) along the t-axis relative to that of A sin ωt.

Alternative forms for solution 5.9 are discussed in Exercise 16.

The Oscillating Pendulum

Figure 5.9 shows a mass of M kilograms
attached to a rod of length L metres, the
weight of which we neglect. If the rod is
pulled away from the vertical and released,
it will oscillate for some time. The displace-
ment of the mass can be measured by the
angle that it makes with the vertical. To
find θ as a function of time t, we once
again use Newton’s second law. If damping

q L

M

Mg
Mg cos

Mg sinq
q

s

is ignored, only gravity acts on M , and the Figure 5.9
component of its weight along the circular arc
followed by M is Mg sin θ. If s measures arc length, counterclockwise from the
vertical along the arc followed by M , then d2s/dt2 is the acceleration of M , and
Newton’s second law requires

M
d2s

dt2
= −Mg sin θ.

We remove M from the equation, and substitute s = Lθ,

d2(Lθ)
dt2

= −g sin θ.

Thus, θ(t) must satisfy the second-order nonlinear equation
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d2θ

dt2
+

g

L
sin θ = 0. (5.12)

In general, this equation is unsolvable, but if we restrict discussions to small dis-
placements, then sin θ can be approximated by θ, itself, and equation 5.12 is replaced
by the linear equation

d2θ

dt2
+

gθ

L
= 0. (5.13)

Since the auxiliary equation is m2 + g/L = 0, with roots m = ±
√

g/Li, a general
solution of the differential equation is

θ(t) = C1 cos
√

g

L
t + C2 sin

√
g

L
t.

Thus, small displacements of a pendulum are approximated by simple harmonic
motion.

EXERCISES 5.1

1. Express the solution in Example 5.2 in the form x(t) = A cos (40t − φ).

2. A 1-kilogram mass is suspended vertically from a spring with constant 16 newtons per metre.
The mass is pulled 10 centimetres below its equilibrium position and then released. Find the
position of the mass, relative to its equilibrium position, at any time if damping is ignored.

3. A 100-gram mass is attached to a spring with constant 100 newtons per metre as in Figure
5.2. The mass is pulled 5 centimetres to the right and released. Find the position of the mass
if damping, and friction over the sliding surface, are ignored. Sketch a graph of the position
function identifying the amplitude, period, and frequency of the oscillations.

4. Repeat Exercise 3 if motion is initiated by striking the mass, at equilibrium, so as to impart a
velocity of 3 metres per second to the left.

5. Repeat Exercise 3 if motion is initiated by pulling the mass 5 centimetres to the right and giving
it an initial velocity 3 metres per second to the left.

6. Repeat Exercise 3 if motion is initiated by pulling the mass 5 centimetres to the left and giving
it an initial velocity 3 metres per second to the left.

7. (a) A 2-kilogram mass is suspended from a spring with constant 1000 newtons per metre. If the
mass is pulled 3 centimetres below its equilibrium position and given a downward velocity
of 2 metres per second, find its position thereafter. Sketch a graph of the position function
identifying the amplitude, period, and frequency of the oscillations.

(b) Do the initial displacement and velocity affect the amplitude, period, and/or frequency?

8. If the mass in Exercise 7 is quadrupled, how does this affect the period and frequency of the
oscillations?

9. If the spring constant in Exercise 7 is quadrupled, how does this affect the period and frequency
of the oscillations?

10. When a 2-kilogram mass is set into vertical vibrations on the end of a spring, 3 full oscillations
occur each second. What is the spring constant if there is no damping?
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11. A mass M is suspended from a spring with constant k. Oscillations are initiated by giving
the mass a displacement x0 and velocity v0. Show that the position of the mass relative to its
equilibrium position, when damping is ignored, can be expressed in the form

x(t) = A sin (
√

k/Mt + φ),

where the amplitude is A =
√

x2
0 + Mv2

0/k, and φ satisfies

sinφ =
x0

A
, cosφ =

√
M/kv0

A
.

12. Use the result of Exercise 11 to show that when the mass on the end of a spring is doubled, the
period increases by a factor of

√
2 and the frequency decreases by a factor of 1/

√
2.

13. Show the following for oscillations of a mass on the end of a spring when damping is ignored:
(a) Maximum velocity occurs when the mass passes through its equilibrium position. What is

the acceleration at this instant?
(b) Maximum acceleration occurs when the mass is at its maximum distance from equilibrium.

What is the velocity there?

14. When a spring is suspended vertically, its own weight causes it to stretch. Would this have any
effect on our analysis of motion of a mass suspended from the spring?

15. A 100-gram mass is suspended vertically from a spring with constant 40 newtons per metre.
The mass is pulled 2 centimetres below its equilibrium position and given an upward velocity
of 10 metres per second. Determine:
(a) the position of the mass as a function of time
(b) the amplitude, period, and frequency of the oscillations
(c) all times when the mass has velocity zero
(d) all times when the mass passes through the equilibrium position
(e) all times when the mass is 1 centimetre above the equilibrium position
(f) whether the mass ever has velocity 12 metres per second
(g) the second time the mass is at a maximum height above the equilibrium position.

16. Simple harmonic motion as represented by equation 5.9 can be expressed in alternative forms
to 5.10a, namely, A sin (ωt − φ), A cos (ωt + φ), and A cos (ωt − φ). In each case, formula 5.10b
for amplitude A is unchanged, only equations 5.10c for angle φ change. Show that:
(a) For A sin (ωt − φ),

sinφ = −C1

A
, cosφ =

C2

A
.

(b) For A cos (ωt + φ),

sinφ = −C2

A
, cosφ =

C1

A
.

(c) For A cos (ωt − φ),

sinφ =
C2

A
, cosφ =

C1

A
.

17. At time t = 0, a mass M is attached to the end of a hanging spring with constant k, and then
released. Assuming that damping is negligible, find the subsequent displacement of the mass as
a function of time.
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18. A mass of M kilograms is suspended vertically from a spring with constant k newtons per
metre. At time t = 0, the mass is pulled x0 metres away from its equilibrium position and
given velocity v0 metres per second. At the same time, the support to which the other end of
the spring is attached begins moving up and down with displacement A sin ωt metres from its
initial position. Find the position of the mass, relative to its equilibrium position, at any time
if damping is ignored. Assume that ω 6=

√
k/M .

19. The figure to the right shows a circular
U-tube with radius r metres. Take y = 0
as the liquid level in the right tube when
both parts of the tube have the same
amount of liquid, and let y measure
distance upward from this position. If
the liquid is disturbed, show that its
vertical motion is simple harmonic,

y

y=0

and find its period. Take ρ as the
density of the liquid.

20. A container of water has mass M kilograms of which m kilograms is water. At time t = 0,
the container is attached to a spring with constant k newtons per metre, and released. A hole
in the bottom of the container allows water to run out at the constant rate of r kilograms per
second. If air resistance proportional to velocity acts on the container, set up an initial-value
problem for the position of the container while water remains in the container. Do so with the
coordinate systems of (a) Figure 5.5, where y = 0 is the unstretched position of the spring, and
(b) Figure 5.6, where x = 0 corresponds to the equilibrium position for a full container. Can
you solve these problems?

21. (a) A cube L metres on each side and with mass M kilograms floats half submerged in water.
If it is pushed down slightly and then released, oscillations take place. Use Archimedes’
principle to find the differential equation governing these oscillations. Assume no damping
forces due to the viscosity of the water.

(b) What is the frequency of the oscillations?

22. A cylindrical buoy 20 centimetres in diameter floats partially submerged with its axis vertical.
When it is depressed slightly and released, its oscillations have a period equal to 4 seconds.
What is the mass of the buoy?

23. A sphere of radius R floats half submerged in water. It is set into vibration by pushing it down
slightly and then releasing it. If y denotes the instantaneous distance of its centre below the
surface, show that

d2y

dt2
=

−3g

2R3

(
R2y − y3

3

)
,

where g is the acceleration due to gravity. Is this a linear differential equation?
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5.2 Vibrating Mass-Spring Systems With Damping

Damped, Unforced Vibrations

Vibrating mass-spring systems without damping are unrealistic. All vibrations are
subject to some degree of damping, and depending on the magnitude of the damp-
ing, oscillations either gradually die out, or are completely expunged. Differential
equation 5.7 describes the motion of a mass on the end of a spring in the presence
of a damping force (with damping constant β) proportional to velocity. When no
other forces act on the mass, besides the spring, and gravity for vertical oscillations,
the differential equation is homogeneous,

M
d2x

dt2
+ β

dx

dt
+ kx = 0. (5.14)

We shall see that three types of motion can occur called underdamped, critically
damped, and overdamped. We illustrate with an example of each before giving a
general discussion.

Before we proceed with the examples, it is worthwhile noting that β is most
often specified by stating that the damping force is a certain number times the
velocity. For example, if we say that the magnitude of the damping force is five
times the velocity, then we are saying that β = 5. We could also say that β = 5
kilograms per second since these must be the units of β in the mks-system (or SI).

Example 5.3 A 50-gram mass is suspended vertically from a very loose spring with constant 5
newtons per metre. The mass is pulled 5 centimetres below its equilibrium position
and given velocity 2 metres per second upward. If, during motion, the mass is acted
on by a damping force in newtons numerically equal to one-tenth the instantaneous
velocity in metres per second, find the position of the mass at any time.

Solution If we choose x = 0 at the equilibrium position of the mass and x positive
upward, the differential equation for the position x(t) of the mass is

50
1000

d2x

dt2
+

1
10

dx

dt
+ 5x = 0, or,

d2x

dt2
+ 2

dx

dt
+ 100x = 0,

along with the initial conditions x(0) = −1/20, x′(0) = 2. The auxiliary equation
m2 + 2m + 100 = 0 has solutions

m =
−2 ±

√
4 − 400
2

= −1 ± 3
√

11i.

Consequently,

x(t) = e−t[C1 cos (3
√

11t) + C2 sin (3
√

11t)].

The initial conditions require

− 1
20

= x(0) = C1, 2 = x′(0) = −C1 + 3
√

11C2,

from which C2 = 13
√

11/220. The position of the mass is therefore given by

x(t) = e−t

[
− 1

20
cos (3

√
11t) +

13
√

11
220

sin (3
√

11t)

]
m.
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The graph of this function in Figure 5.10 clearly indicates how the oscillations
decrease in time. This is an example of underdamped motion.•
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0.15

0.1

0.05

-0.05

-0.1

x

t

-0.05

1

Figure 5.10 Figure 5.11

Example 5.4 Repeat Example 5.3 if the damping constant is β = 2.

Solution The differential equation for the position x(t) of the mass is

50
1000

d2x

dt2
+ 2

dx

dt
+ 5x = 0, or,

d2x

dt2
+ 40

dx

dt
+ 100x = 0,

along with the same initial conditions. The auxiliary equation m2 + 40m + 100 = 0
has solutions

m =
−40 ±

√
1600− 400
2

= −20 ± 10
√

3.

Consequently,

x(t) = C1e
(−20+10

√
3)t + C2e

(−20−10
√

3)t.

The initial conditions require

− 1
20

= x(0) = C1 + C2, 2 = x′(0) = (−20 + 10
√

3)C1 + (−20− 10
√

3)C2,

from which C1 = (2
√

3 − 3)/120 and C2 = −(2
√

3 + 3)/120. The position of the
mass is therefore given by

x(t) =

(
2
√

3 − 3
120

)
e(−20+10

√
3)t −

(
2
√

3 + 3
120

)
e−(20+10

√
3)t m.

The graph of this function is shown in Figure 5.11. This is an example of over-
damped motion; damping is so large that oscillations are completely eliminated.
The mass simply returns to the equilibrium position without passing through it.•

Example 5.5 Repeat Example 5.3 if the damping constant is β = 1.

Solution The differential equation for the position x(t) of the mass is

50
1000

d2x

dt2
+

dx

dt
+ 5x = 0, or,

d2x

dt2
+ 20

dx

dt
+ 100x = 0,

along with the initial conditions x(0) = −1/20, x′(0) = 2. The auxiliary equation
m2 + 20m + 100 = (m + 10)2 = 0 has a repeated solution m = −10. Consequently,

x(t) = (C1 + C2t)e−10t.

The initial conditions require
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− 1
20

= x(0) = C1, 2 = x′(0) = −10C1 + C2,

from which C2 = 3/2. The position of the
mass is therefore given by

x(t) =
(
− 1

20
+

3t

2

)
e−10t m.

The graph of this function is shown
in Figure 5.12. This is an example
of critically damped motion; any

x

t

0.04

-0.05

1

smaller value of the damping constant Figure 5.12
leads to underdamped motion, and any
higher value leads to overdamped motion.•

General Discussion of Damped, Unforced Motion

We now give a general discussion of differential equation 5.14, clearly delin-
eating values of the parameters M , k, and β that lead to underdamped, critically
damped, and overdamped motion. The auxiliary equation associated with

M
d2x

dt2
+ β

dx

dt
+ kx = 0 (5.14)

is the quadratic equation

Mm2 + βm + k = 0, (5.15a)

with solutions

m =
−β ±

√
β2 − 4kM

2M
. (5.15b)

Clearly there are three possibilities depending on the value of β2 − 4kM .

Underdamped Motion β2 − 4kM < 0

When β2 − 4kM < 0, roots 5.15b of the auxiliary equation are complex,

m = − β

2M
±
√

4kM − β2

2M
i, (5.16)

and a general solution of differential equation 5.14 is

x(t) = e−βt/(2M)

[
C1 cos

√
4kM − β2

2M
t + C2 sin

√
4kM − β2

2M
t

]
. (5.17)

If we set ω =

√
4kM − β2

2M
, then

x(t) = e−βt/(2M)(C1 cosωt + C2 sinωt). (5.18)

In Section 5.1, we indicated how to express the sine and cosine terms in the form
A sin (ωt + φ), so that a simplified expression for underdamped oscillations is

x(t) = Ae−βt/(2M) sin (ωt + φ). (5.19)
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The presence of the exponential
e−βt/(2M) before the trigonometric
function indicates that we have
oscillations that gradually die out.
Except possibly for the starting
value and initial slope, a typical
graph of this function is shown in
Figure 5.13. It is contained between

x

t

Ae - t / M(2 )

-

sin t+( )

b

fw

Ae - t / M(2 )b

Ae - t / M(2 )b

the curves x = ±Ae−βt/(2M). Motion Figure 5.13
is not periodic, but the time between
successive maxima, or between successive minima, or between successive passes
through the equilibrium position when going in the same direction, are all the same.
This is often called the quasi-period of underdamped motion. It is

2π

ω
=

2π√
4kM − β2

2M

=
2π√

k

M
− β2

4M2

. (5.20)

Since
2π√
k/M

is the period of the motion when damping is absent, the quasi-period is

larger than this period, but it approaches
2π√
k/M

as β → 0. Correspondingly, damp-

ing decreases the frequency of oscillations. As damping increases and β2/(4M2)
approaches k/M , the quasi-period becomes indefinitely long and oscillations disap-
pear.

Critically Damped Motion β2 − 4kM = 0

This is the limiting case of underdamped motion. Roots 5.15b of the auxiliary
equation are real and equal m = −β/(2M), and a general solution of differential
equation 5.14 is

x(t) = (C1 + C2t)e−βt/(2M). (5.21)

Damping is so large that oscillations are eliminated and the mass returns from its
initial position to the equilibrium position passing through the equilibrium position
at most once. This situation forms the division between underdamped motion and
overdamped motion (yet to come). Any increase of β results in overdamped motion
and any decrease results in underdamped oscillations. Except possibly for starting
values and initial slopes, typical graphs of this function are shown in Figure 5.14.

x

t

x

t

Figure 5.14

Overdamped Motion β2 − 4kM > 0
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When β2 − 4kM > 0, roots 5.15b of the auxiliary equation are real, distinct and
negative. A general solution of differential equation 5.14 is

x(t) = C1e
(−β+

√
β2−4kM)t/(2M) + C2e

(−β−
√

β2−4kM)t/(2M). (5.22)

Typical graphs of this function are similar to those in Figure 5.14 for critically
damped motion.

We now consider further examples of these three possibilities.

Example 5.6 A 100-gram mass is suspended vertically from a spring with constant 5 newtons per
metre. The mass is pulled 5 centimetres below its equilibrium position and given
velocity 2 metres per second upward. If, during motion, the mass is acted on by
a damping force in newtons numerically equal to one-twentieth the instantaneous
velocity in metres per second, find the position of the mass at any time. Find the
quasi-period of the motion.

Solution If we choose x = 0 at the equilibrium position of the mass and x positive
upward, the differential equation for the position x(t) of the mass is

1
10

d2x

dt2
+

1
20

dx

dt
+ 5x = 0, or, 2

d2x

dt2
+

dx

dt
+ 100x = 0,

along with the initial conditions x(0) = −1/20, x′(0) = 2. The auxiliary equation
2m2 + m + 100 = 0 has solutions

m =
−1 ±

√
1 − 800
4

=
−1 ±

√
799i

4
.

Consequently,

x(t) = e−t/4

[
C1 cos

(√
799t
4

)
+ C2 sin

(√
799t
4

)]
.

The initial conditions require

− 1
20

= x(0) = C1, 2 = x′(0) = −C1

4
+

√
799C2

4
,

from which C2 = 159
√

799/15980. The position of the mass is therefore given by

x(t) = e−t/4

[
− 1

20
cos

(√
799t
4

)
+

159
√

799
15980

sin

(√
799t
4

)]
m.

Using the technique suggested in Example 5.2, we can rewrite the displacement in
the form

x(t) = Ae−t/4 sin

(√
799t
4

+ φ

)
,

where

A =

√√√√
(
− 1

20

)2

+

(
159

√
799

15980

)2

≈ 0.285661.
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The graph of these underdamped
oscillations is shown in Figure 5.15.
Oscillations are bounded by the
curves x = ±0.285661e−t/4, shown
dotted. According to formula 5.20,
the quasi-period is√

5
1/10)

− 1
4(400)(25)

≈ 0.9.•

x

t

0.2

-0.2

2 4 6

Figure 5.15

Example 5.7 A 4-kilogram mass is attached to a horizontal spring. The mass moves on a friction-
less surface, but a dashpot creates a damping force in newtons equal to ten times
the velocity of the mass. What spring constant leads to critically damped motion?

Solution Critically damped motion results when spring constant k, mass M = 4,
and damping factor β = 10 are related by β2 − 4kM = 0; that is, 100 − 4k(4) = 0.
This implies that k = 25/4 N/m.•

Example 5.8 A 2-kilogram mass is suspended vertically from a spring with constant 500 newtons
per metre. The mass is pulled 10 centimetres below its equilibrium position and
given velocity 5 metres per second downward. A dashpot is attached to the mass
creating a damping force in newtons numerically equal to one hundred times the
instantaneous velocity in metres per second. Show that motion of the mass is
overdamped and that in 1 second the mass is within 1 millimetre of its equilibrium
position.

Solution If we choose x = 0 at the equilibrium position of the mass and x positive
upward, the initial-value problem for the position x(t) of the mass is

2
d2x

dt2
+ 100

dx

dt
+ 500x = 0, x(0) = − 1

10
, x′(0) = −5.

The auxiliary equation 2m2 + 100m + 500 = 2(m2 + 50m + 250) = 0 has solutions

m =
−50±

√
2500− 1000
2

= −25 ± 5
√

15.

With real roots, motion is overdamped and the position function is of the form

x(t) = C1e
(−25+5

√
15)t + C2e

(−25−5
√

15)t.

The initial conditions require

− 1
10

= x(0) = C1 + C2, −5 = x′(0) = (−25 + 5
√

15)C1 − (25 + 5
√

15)C2.

These can be solved for

C1 = −
√

15 + 1
20

, C2 =
√

15− 1
20

.

The position of the mass is therefore given by

x(t) = −

(√
15 + 1
20

)
e(−25+5

√
15)t +

(√
15 − 1
20

)
e(−25−5

√
15)t m.
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If we set t = 1, we obtain the position of the mass after one second,

x(1) = −

(√
15 + 1
20

)
e(−25+5

√
15) +

(√
15 − 1
20

)
e(−25−5

√
15) = −0.000870 m;

that is, the mass is 0.87 millimetres from the equilibrium position.•

EXERCISES 5.2

1. A 1-kilogram mass is suspended vertically from a spring with constant 16 newtons per metre.
The mass is pulled 10 centimetres below its equilibrium position and then released. Find the
position of the mass, relative to its equilibrium position, if a damping force in newtons equal to
one-tenth the instantaneous velocity in metres per second acts on the mass.

2. Repeat Exercise 1 if the damping force is equal to ten times the instantaneous velocity.

3. What damping factor creates critically damped motion for the spring and mass in Exercise 1?

4. A 100-gram mass is suspended vertically from a spring with constant 4000 newtons per metre.
The mass is pulled 2 centimetres above its equilibrium position and given a downward velocity
of 4 metres per second. Find the position of the mass, relative to its equilibrium position, if
a dashpot is attached to the mass so as to create a damping force in newtons equal to forty
times the instantaneous velocity in metres per second. Does the mass ever pass through the
equilibrium position?

5. Repeat Exercise 4 if the mass is given a downward velocity of 10 metres per second.

6. (a) A 1-kilogram mass is suspended vertically from a spring with constant 50 newtons per metre.
The mass is pulled 5 centimetres above its equilibrium position and given an upward velocity
of 3 metres per second. Find the position of the mass, relative to its equilibrium position,
if a dashpot is attached to the mass so as to create a damping force in newtons equal to
fifteen times the instantaneous velocity in metres per second.

(b) Does the mass ever pass through the equilibrium position?
(c) When is the mass 1 centimetre from the equilibrium position?
(d) Sketch a graph of the position function.

7. Repeat Exercise 6 if the initial velocity is 3/4 metre per second downward.

8. Repeat Exercise 6 if the initial velocity is 3 metres per second downward.

9. (a) A 2-kilogram mass is suspended vertically from a spring with constant 200 newtons per
metre. The mass is pulled 10 centimetres above its equilibrium position and given an upward
velocity of 5 metres per second. Find the position of the mass, relative to its equilibrium
position, if a damping force in newtons equal to four times the instantaneous velocity in
metres per second also acts on the mass.

(b) What is the maximum distance the mass attains from equilibrium?
(c) When does the mass first pass through the equilibrium position?

10. (a) A 1-kilogram mass is suspended vertically from a spring with constant 40 newtons per
metre. The mass is pulled 5 centimetres below its equilibrium position and released. Find
the position of the mass, relative to its equilibrium position, if a dashpot is attached to the
mass so as to create a damping force in newtons equal to twice the instantaneous velocity
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in metres per second. Express the function in the form Ae−at sin (ωt + φ) for appropriate a,
A, ω, and φ.

(b) Show that the length of time between successive passes through the equilibrium position
is constant. What is this time? Twice its value is often called the quasi period for
overdamped motion? Is it the same as the period of the corresponding undamped system?

11. A mass M is suspended from a spring with constant k. Motion is initiated by giving the mass
a displacement x0 from equilibrium and a velocity v0. A damping force with constant β > 0
results in critically damped motion.
(a) Show that if x0 and v0 are both positive or both negative, the mass cannot pass through its

equilibrium position.
(b) When x0 and v0 have opposite signs, it is possible for the mass to pass through the equilib-

rium position, but it can do so only once. What condition must x0 and v0 satisfy for this
to happen?

12. A mass M is suspended from a spring with constant k. Motion is initiated by giving the mass
a displacement x0 from equilibrium and a velocity v0. A damping force with constant β > 0
results in overdamped motion.
(a) Show that if x0 and v0 are both positive or both negative, the mass cannot pass through its

equilibrium position.
(b) When x0 and v0 have opposite signs, it is possible for the mass to pass through the equilib-

rium position, but it can do so only once. What condition must x0 and v0 satisfy for this
to happen?

13. A weighing platform has weight W and is supported by springs with combined spring constant
k. A package with weight w is dropped on the platform so that the two move together. Find
a formula for the maximum value of w so that oscillations do not occur. Assume that there is
damping in the motion with constant β.

14. In order that a swinging door with moment
of inertia I about its hinge return to its
closed position, it has a spring attached q

to it. When the door is open (figure to
the right), the spring exerts a force on the door proportional to angle θ with constant of
proportionality k. In order to dampen oscillations of the door, there is also a device that
exerts a restoring force on the door that is proportional to the angular speed of the door (the
constant of proportionality being β). Find values of β that will ensure that the door does not
continually oscillate back and forth while closing.

15. Suppose a mass M is attached to a vertical spring with constant k and damping is increased,
taking the system from underdamped motion, through critically damped motion, to overdamped
motion. Show that the rate at which the mass returns to its equilibrium position is fastest for
critically damped motion. Compare rates for underdamped and overdamped motions.

16. A mass M is suspended from a spring with constant k. Oscillations are initiated by giving the
mass a displacement x0 from equilibrium and a velocity v0. A damping force with constant
β > 0 results in underdamped motion.
(a) Show that the position of the mass relative to its equilibrium position can be expressed in

the form

x(t) = Ae−βt/(2M) sin

(√
4kM − β2

2M
t + φ

)
,
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where A and φ are constants.
(b) Show that the length of time between successive passes through the equilibrium position is

constant. What is this time?
(c) Let t1, t2, . . ., be the times at which the velocity of the mass is equal to zero (and therefore

the times at which x(t) has relative maxima and minima. If x1, x2, . . ., are the corresponding
values of x(t), show that the ratio

xn

xn+2
= e2πβ/

√
4kM−β2

,

is a constant independent of n. The quantity 2πβ/
√

4kM − β2 is called the
logarithmic decrement.

17. At time t = 0, a mass M is suspended from a spring
with constant k as shown in the figure to the right.
The upper end of the spring is attached to a support
that is not stationary. Suppose that at time t = 0,
the support is at a position designated as z = 0, and
its displacement relative to this position thereafter
is given by z = f(t), where z is chosen positive
upward. Let the displacement x(t) of the mass be

Mass

x

x=0
when spring
unstretched

z

z =0

measured relative to its equilibrium position. Assuming that damping is present, determine the
differential equation for x(t).

18. At time t = 0, a mass M is supported by a spring
with constant k as shown in the figure to the right.
The lower end of the spring is attached to a support
that is not stationary. Suppose that at time t = 0,
the support is at a position designated as z = 0, and
its displacement relative to this position thereafter
is given by z = f(t), where z is chosen positive
upward. Let the displacement x(t) of the mass be

Mass

x

x=0
at equilibrium

z

z =0

measured relative to its equilibrium position. Assuming that damping is present, determine the
differential equation for x(t).

19. The figure to the right shows the left front end
of a car’s suspension system. The road is level for
x < 0, but has equation Y = f(x) for x ≥ 0. The
speed of the car is a constant v. Assuming that
the mass supported by this part of the car is M ,
and damping is taken into account, find the initial-
value problem satisfied by the displacement y(t)
of the car from equilibrium. If f(x) is due to a x

at equilibrium
b

Y f x

y

y

M

k

= 0

= ( )

speed bump, it is likely to have a piecewise definition, and handling it by the techniques of
Chapter 4 is not particularly convenient. In this situation, Laplace transforms of Chapter 6 are
more suitable.

20. Find the differential equation for small displacements of the pendulum in Figure 5.9 when
damping proportional velocity is taken into account.
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5.3 Vibrating Mass-Spring Systems With External Forces

So far in this chapter we have considered mass-spring systems with damping forces,
and in the case of vertical oscillations, gravity is also a consideration. With only
these forces, differential equation 5.7 describing motion is homogeneous. Problems
become more interesting, and more widely applicable, when other forces are taken
into consideration. In particular, periodic forcing functions can lead to resonance.

When all other forces acting on the mass in a damped mass-spring system are
grouped together into one term denoted by F (t), the differential equation describing
motion is

M
d2x

dt2
+ β

dx

dt
+ kx = F (t). (5.23)

We consider various possibilities for F (t). To begin with, you may have noticed that
in every example of masses sliding along horizontal surfaces (Figure 5.16), we have
ignored friction between the mass and the surface. Suppose we now take it into
account. If the coefficient of kinetic friction between the mass and surface is µ (see
Section 3.2), then the force of friction retarding motion has magnitude µMg where
g > 0 is the acceleration due to gravity. Entering this force into differential equation
5.23 for all time is a problem due to the difficulty in specifying the direction of the
force. Certainly we can say that friction is always in a direction opposite to velocity,
and we can represent it in the form −µMg

v

|v| , but entering this into equation 5.23

destroys linearity of the equation. The quotient −v/|v| has values ±1 depending on
whether v is negative or positive; it determines the direction of the frictional force.
When v is positive, friction is negative (to the left), and when v is negative, friction
is positive (to the right). What this means is that each time the mass changes
direction, the differential equation must be reconstituted with the appropriate sign
attached to µMg. The following example is an illustration.

Spring

Mass

Dashpot

Figure 5.16

Example 5.9 A 1-kilogram mass, attached to a spring with constant 16 newtons per metre, slides
horizontally along a surface where the coefficient of kinetic friction between surface
and mass is µ = 1/10. Motion is initiated by pulling the mass 10 centimetres to
the right of its equilibrium position and giving it velocity 1 metre per second to the
left. If any damping forces are negligible, find the point where the mass comes to
an instantaneous stop for the second time.

Solution While the mass is travelling to the left for the first time, the force of
friction is to the right, and therefore the initial-value problem for its position during
this time is
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d2x

dt2
+ 16x =

(
1
10

)
(1)g, x(0) =

1
10

, x′(0) = −1,

where g = 9.81. Since the auxiliary equation m2 + 16 = 0 has roots m = ±4i,
a general solution of the associated homogeneous differential equation is xh(t) =
C1 cos 4t + C2 sin 4t. It is easy to spot that a particular solution of the nonhomoge-
neous equation is xp(t) = g/160, and therefore a general solution of the nonhomo-
geneous differential equation is

x(t) = C1 cos 4t + C2 sin 4t +
g

160
.

The initial conditions require

1
10

= x(0) = C1 +
g

160
, −1 = x′(0) = 4C2.

Hence,

x(t) =
(

1
10

− g

160

)
cos 4t − 1

4
sin 4t +

g

160
m.

This represents the position of the mass only while it is travelling to the left for the
first time. To determine the time and place at which the mass stops moving to the
left, we set the velocity equal to zero,

0 =
dx

dt
= −4

(
1
10

− g

160

)
sin 4t − cos 4t.

This equation can be simplified to

tan 4t =
40

g − 16
,

solutions of which are

t =
1
4

Tan−1

(
40

g − 16

)
+

nπ

4
,

where n is an integer. The only acceptable solution is the smallest positive one,
and this occurs for n = 1, giving t = 0.431082 s. The position of the mass at this
time is x(0.431082) = −0.191663 m. The mass will move from this position if the
spring force is sufficient to overcome the force of static friction. Let us suppose that
the coefficient of static friction is µs = 1/5 (see Section 3.2). This means that the
smallest force necessary for the mass to move has magnitude (1/5)(1)(9.81) = 1.962
N. Since the spring force at the first stopping position is 0.191663(16) = 3.06661 N,
it is more than enough to overcome the force of static friction.

For the return trip to the right, friction is to the left, and therefore the initial-
value problem for position is

d2x

dt2
+ 16x = − g

10
, x(0) = −0.191663, x′(0) = 0.

For simplicity, we have reinitialized time t = 0 to commencement of motion to the
right (see Exercise 1 for the analysis without reinitializing time). A general solution
of this differential equation is
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x(t) = C3 cos 4t + C4 sin 4t − g

160
.

The initial conditions require

−0.191663 = x(0) = C3 −
g

160
, 0 = x′(0) = 4C4.

Thus,

x(t) =
( g

160
− 0.191663

)
cos 4t − g

160
m.

The mass comes to rest when

0 =
dx

dt
= −4

( g

160
− 0.191663

)
sin 4t,

solutions of which are given by t = nπ/4 where n is an integer. The smallest positive
value is t = π/4 and the position of the mass at this time is

x(π/4) =
( g

160
− 0.191663

)
cosπ − g

160
= 0.069038 m;

that is, the mass is 6.9 cm to the right of the equilibrium position. The spring force
is still sufficient to overcome the force of friction and the mass will again move to
the left.•

Periodic Forcing Functions and Resonance

We now consider the application of periodic forcing functions to masses on
the ends of springs. When an external force F sinωt, where F > 0 and ω > 0
are constants, acts on the mass in a mass-spring system, differential equation 5.23
describing motion becomes

M
d2x

dt2
+ β

dx

dt
+ kx = F sinωt. (5.24)

We begin discussions with systems that have no damping, somewhat unrealistic
perhaps, but essential ideas are not obscured by intensive calculations.

Example 5.10 A mass of M kilograms is suspended from a spring with constant k newtons per
metre. It is given initial displacement x0 metres and initial velocity v0 metres per
second. Assume that damping is negligible during its subsequent motion, but an
external force F sinωt newtons acts on the mass. (a) Find the position of the mass
as a function of time when ω 6=

√
k/M . Is it periodic? (b) Discuss the motion of

the mass when ω =
√

k/M .

Solution The initial-value problem for position of the mass is

M
d2x

dt2
+ kx = F sinωt, x(0) = x0, x′(0) = v0.

The auxiliary equation Mm2 + k = 0 has solutions m = ±
√

k/Mi. Suppose we set
ω0 =

√
k/M . Then, a general solution of the associated homogeneous differential

equation is xh(t) = C1 cosω0t + C2 sinω0t.
(a) When ω 6= ω0, undetermined coefficients suggests a particular solution of the
form xp(t) = A sin ωt + B cosωt. Substitution into the differential equation leads
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to xp(t) = [F/(k − Mω2)] sin ωt. Thus, a general solution of the nonhomogeneous
differential equation is

x(t) = C1 cosω0t + C2 sin ω0t +
F

k − Mω2
sinωt.

The initial conditions require

x0 = x(0) = C1, v0 = x′(0) = ω0C2 +
Fω

k − Mω2
.

Thus, the position of the mass at any time is

x(t) = x0 cosω0t +
1
ω0

(
v0 −

Fω

k − Mω2

)
sinω0t +

F

k − Mω2
sinωt.

This is the sum of two periodic functions with different periods; the first two terms
have period 2π/ω0, and the third term has period 2π/ω. Their sum is periodic if,
and only if, ω/ω0 is a rational number. When the ratio is a rational number, say
p/q in lowest terms, then x(t) has period 2πq/ω0 or 2πp/ω.
(b) If ω = ω0, we should take the particular solution in the form xp(t) = t(A sinωt+

B cosωt). Substitution into the differential equation leads to xp(t) = − Ft

2Mω
cosωt,

and therefore a general solution of the differential equation with nonhomogeneity
F sin ωt is

x(t) = C1 cosωt + C2 sinωt − Ft

2Mω
cosωt.

The initial conditions require

x0 = x(0) = C1, v0 = x′(0) = ωC2 −
F

2Mω
.

Thus, the position of the mass when the forcing function is F sin ωt is

x(t) = x0 cosωt +
1
ω

(
v0 +

F

2Mω

)
cosωt.

A graph of this function would look
somewhat like that in Figure 5.17. The
last term in the solution has led to oscil-
lations that become unbounded. This is a
direct result of the fact that when ω = ω0,
the frequency of the forcing term is equal
to the frequency at which the system
would oscillate were no forcing term pre-
sent (the so-called natural frequency

x

t

of the system). (Think of this as similar Figure 5.17
to a parent pushing a child on a swing.
Every other time the swing begins its downward motion, the parent applies a force,
resulting in the child going higher and higher. The parent applies the force at the
same frequency as the motion of the swing.)•

This phenomenon of ever increasing oscillations due to a forcing function with
the same frequency as the natural frequency of the system is known as resonance.
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Because the system is undamped, we refer to this as undamped resonance.

A natural question at this point is to ask whether periodic forces that are not
sinusoidal can cause resonance. We cannot answer this question conveniently now
because the techniques of Chapter 4 do not handle periodic, non-sinusoidal forces
easily. Laplace transforms of Chapter 6 are exceptional in dealing with such forces,
and we will use them to show that non-sinusoidal periodic forces can indeed cause
undamped resonance.

Resonance also occurs in damped systems, but there is a difference; oscillations
can be large depending on the degree of damping and the forcing frequency, but they
cannot become unbounded. Differential equation 5.24 describes motion of a damped
mass-spring system in the presence of a periodic forcing function. Equations 5.17–
5.21 define general solutions of the associated homogeneous equation, and it is clear
that none of these solutions contain the nonhomogeneity A sin ωt for any ω. To put
it another way, in the presence of damping, simple harmonic motion is not possible,
and therefore the system does not have a natural frequency. Resonance as found
in undamped systems is therefore not possible. For underdamped motion, however,
oscillations can be large, depending on the degree of damping and the frequency
of the applied periodic force, and this is again known as resonance, but we call it
damped resonance. We illustrate in the following example.

Example 5.11 A 1-kilogram mass is at rest, suspended from a spring with constant 65 newtons
per metre. Attached to the mass is a dashpot that creates a damping force equal
to twice the velocity of the mass whenever the mass is in motion. At time t = 0, a
vertical force 3 sinωt begins to act on the mass. Find the position function for the
mass. For what value of ω are oscillations largest?

Solution The initial-value problem for the motion of the mass is

d2x

dt2
+ 2

dx

dt
+ 65x = 3 sin ωt, x(0) = 0, x′(0) = 0.

The auxiliary equation m2 + 2m + 65 = 0 has solutions m = −1 ± 8i so that
a general solution of the associated homogeneous differential equation is xh(t) =
e−t(C1 cos 8t + C2 sin 8t). A particular solution can be found in the form xp(t) =
A sin ωt + B cosωt by undetermined coefficients. The result is

xp(t) =
3(65− ω2)

(65− ω2)2 + 4ω2
sin ωt − 6ω

(65− ω2)2 + 4ω2
cosωt.

A general solution of the nonhomogeneous differential equation is therefore

x(t) = e−t(C1 cos 8t + C2 sin 8t) +
3

(65− ω2)2 + 4ω2

[
(65− ω2) sinωt − 2ω cosωt

]
.

The initial conditions require

0 = x(0) = C1 −
6ω

(65 − ω2)2 + 4ω2
, 0 = x′(0) = −C1 + 8C2 +

3ω(65− ω2)
(65− ω2)2 + 4ω2

.

These give

C1 =
6ω

(65− ω2)2 + 4ω2
, C2 =

3ω(ω2 − 63)
8[(65− ω2)2 + 4ω2]

,
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and the position of the mass is therefore

x(t) =
3ωe−t

8[(65− ω2)2 + 4ω2]
[16 cos 8t + (ω2 − 63) sin 8t]

+
3

(65− ω2)2 + 4ω2

[
(65− ω2) sinωt − 2ω cosωt

]
m.

The terms involving cos 8t and sin 8t are called the transient part of the solution,
transient because the e−t factor effectively eliminates these terms after a long time.
The terms involving sinωt and cosωt, not being subjected to such a factor, do not
diminish in time. They are called the steady-state part of the solution. In Figure
5.18a we have shown the transient solution; Figure 5.18b shows the steady-state
solution with the specific choice ω = 4; and Figure 5.18c shows their sum.
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When the forcing frequency is equal to the natural frequency in undamped
systems, resonance in the form of unbounded oscillations occurs. Inspection of the
above solution indicates that for no value of ω can oscillations become unbounded
in this damped system. However, there is a value of ω that makes oscillations
largest relative to all other values of ω. In particular, because the transient part
of the solution becomes negligible after a sufficiently long time, we are interested
in maximizing the amplitude of the steady-state part of the solution. It is the
particular solution xp(t). The amplitude of the oscillations represented by this term
is

√[
3(65− ω2)

(65− ω2)2 + 4ω2

]2

+
[

−6ω

(65 − ω2)2 + 4ω2

]2
=

3√
(65− ω2)2 + 4ω2

;

that is, the steady-state solution can be expressed in the form

xp(t) =
3√

(65 − ω2)2 + 4ω2
sin (ωt + φ)
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for some φ. To maximize the amplitude we minimize (65 − ω2)2 + 4ω2. Setting its
derivative equal to zero gives

0 = 2(65− ω2)(−2ω) + 8ω,

and the only positive solution of this equation is ω = 3
√

7. For this value of ω, the
steady-state solution becomes

xp(t) =
3
16

sin (3
√

7t).

Maximum oscillations have been realized and the system is said to be in damped
resonance. We have shown a graph of this function in Figure 5.19. Compare the
scale on the vertical axis in this figure to that in Figure 5.18b where ω = 4. We
have shown a plot of amplitude versus ω in Figure 5.20.•
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We now give a general discussion of damped resonance. When a damped,
vibrating mass-spring system is subjected to a sinusoidal input F sin ωt, the differ-
ential equation determining displacements of the mass is

M
d2x

dt2
+ β

dx

dt
+ kx = F sinωt.

Because we are assuming that the motion is underdamped, a general solution of the
associated homogeneous equation is given by equation 5.17,

xh(t) = e−βt/(2M)

[
C1 cos

√
4kM − β2

2M
t + C2 sin

√
4kM − β2

2M
t

]
.

A particular solution can be obtained with undetermined coefficients, assuming the
solution in the form

xp(t) = B sinωt + D cosωt.

When we substitute this into the differential equation, we get

M(−ω2B sin ωt − ω2D cosωt) + β(ωB cosωt − ωD sin ωt)
+ k(B sinωt + D cosωt) = F sinωt.

We now equate coefficients of terms in sinωt and cosωt,

−Mω2B − ωβD + kB = F,

−Mω2D + ωβB + kD = 0.

The solution of these equations is
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B =
F (k − Mω2)

(k − Mω2)2 + β2ω2
, D =

−βωF

(k − Mω2)2 + β2ω2
.

Thus,

xp(t) =
F (k − Mω2)

(k − Mω2)2 + β2ω2
sin ωt − βωF

(k − Mω2)2 + β2ω2
cosωt.

A general solution of the differential equation is x(t) = xh(t) + xp(t). We are
interested only in the steady-state part of the solution, namely xp(t). We can write
it in the form xp(t) = A sin (ωt + φ), where the amplitude is given by

A =

√[
F (k − Mω2)

(k − Mω2)2 + β2ω2

]2

+
[

−βωF

(k − Mω2)2 + β2ω2

]2
,

and this simplifies to A =
F√

(k − Mω2)2 + β2ω2
. Thus,

xp(t) =
F√

(k − Mω2)2 + β2ω2
sin (ωt + φ).

The quantity

Q(ω) =
1√

(k − Mω2)2 + β2ω2
(5.25)

is called the gain factor, or just plain gain, with units of metres per newton. It
measures the increase in the amplitude of the motion per newton increase of the
applied force. For instance, if the gain is 0.01, then the amplitude of the oscillations
increases by 1 centimetre for each newton increase of the applied force. It depends
on all four physical quantities in the system, M , k, β, and ω. Our primary interest
is in how it depends on ω for fixed M , k, and β. But it is also of interest to see its
dependence on β for fixed values of M , k, and ω.

Damped resonance occurs when ω is chosen to maximize the amplitude of
xp(t). This occurs when Q(ω) is maximized (since F is fixed), and this means when
(k − Mω2)2 + β2ω2 is minimized. Critical values of this function are defined by

0 =
d

dω
[(k − Mω2)2 + β2ω2 = 2(k − Mω2)(−2Mω) + 2β2ω.

The nontrivial solution of this equation is

ω =

√
k

M
− β2

2M2
.

This is the applied frequency for damped resonance. The gain at this frequency is

1√(
k − k +

β2

2M

)2

+ β2

(
k

M
− β2

2M2

) =
1

β

√
k

M
− β2

4M2

.

Notice that as β approaches zero, the frequency at damped resonance approaches√
k/M , the frequency for undamped resonance.
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Figure 5.21 shows plots of Q(ω)
for four values of β when k = 1
and M = 1. As β approaches zero,
the gain at damped resonance be-
comes very large.
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Figure 5.21

Example 5.12 A mass of 500 grams, attached to a very loose spring with constant 2 newtons per
metre, is at rest on a horizontal table. The other end of the spring is attached to a
block that oscillates back and forth, starting at time t = 0 according to 0.01 sin 3t
metres. During its subsequent motion, the mass experiences a damping force in
newtons that is 1/10 its velocity in metres per second. Find the displacement of the
mass from its equilibrium position as a function of time. Determine the amplitude
of the steady-state oscillations.

Solution According to equation 5.4, the differential equation describing the dis-
placement of the mass is

1
2

d2x

dt2
+

1
10

dx

dt
+ 2x = 2(0.01 sin 3t),

or,

5
d2x

dt2
+

dx

dt
+ 20x =

1
5

sin 3t.

Initial conditions are x(0) = x′(0) = 0. The auxiliary equation is

0 = 5m2 + m + 20, with solutions m =
−1 ±

√
1 − 4(5)(20)
10

=
−1 ±

√
399i

10
.

A general solution of the associated homogeneous equation is therefore

xh(t) = e−t/10

(
C1 cos

√
399t
10

+ C2 sin
√

399t
10

)
.

When we substitute a particular solution of the form xp(t) = A sin 3t+B cos 3t into
the nonhomogeneous equation, we obtain

5(−9A sin 3t − 9B cos 3t) + (3A cos 3t − 3B sin 3t) + 20(A sin 3t + B cos 3t) =
1
5

sin 3t.

Equating coefficients of sin 3t and cos 3t gives the equations

−45A − 3B + 20A =
1
5
, −45B + 3A + 20B = 0.

The solution is A = −1/78 and B = 1/390. Thus, xp(t) = − 1
78

sin 3t +
1

390
cos 3t,

and a general solution of the differential equation is

x(t) = e−t/10

(
C1 cos

√
399t
10

+ C2 sin
√

399t
10

)
− 1

78
sin 3t +

1
390

cos 3t.
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The initial conditions require

0 = x(0) = C1 +
1

390
, 0 = x′(0) = −C1

10
+

√
399C2

10
− 3

78
.

These give C1 = − 1
390

and C2 =
149

390
√

399
. The displacement of the mass is there-

fore

x(t) = e−t/10

(
− 1

390
cos

√
399t
10

+
149

390
√

399
sin

√
399t
10

)
− 1

78
sin 3t +

1
390

cos 3t m.

The amplitude of the steady-state oscillations is

A =

√(
1
78

)2

+
(

1
390

)2

=
√

26
390

m.•

Amplitude Modulation

Suppose an oscillatory system is modelled by differential equation 5.2 with no
damping and an external forcing function A cos ωt, where A and ω are positive
constants. Provided ω is not equal to the natural frequency ω0 =

√
k/M of the

system, it is straightforward to show that a general solution of this equation is

x(t) = C1 cosω0t + C2 sin ω0t +
A

k − Mω2
cosωt.

If the system has no initial energy at time t = 0, and the force A cosωt excites the
system, then the initial conditions are x(0) = 0 and x′(0) = 0, and these imply that
C2 = 0 and C1 = A/(k − Mω2). Thus,

x(t) =
A

M(ω2
0 − ω2)

(cosωt − cosω0t).

By using the trigonometric identity cosF − cosG = −2 sin
(

F + G

2

)
sin
(

F − G

2

)
,

we can write this solution in the form

x(t) =
2A

M(ω2 − ω2
0)

sin
(

ω − ω0

2

)
t sin

(
ω + ω0

2

)
t.

If ω is very close to ω0 (they have been assumed not equal), then |ω0 − ω| is very
much smaller than ω0 + ω. Suppose for instance that ω = 1.1ω0, in which case

x(t) =
2A

M(1.12ω2
0 − ω2

0)
sin
(

1.1ω0 − ω0

2

)
t sin

(
1.1ω0 + ω0

2

)
t

=
9.52A

Mω2
0

sin (0.05ω0t) sin (1.05ω0t).

We have plotted this function in Figure 5.22a. We have also included plots of

the functions ±9.52A

Mω2
0

sin (0.05ω0t) (the dashed curves), and have done so for the

following reason. Obviously the period of the dashed curves is much larger than that
of x(t). We could look at the function x(t) as the sine function sin (1.05ω0t) with a
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time varying amplitude ±9.52A

Mω2
0

sin (0.05ω0t). In Figure 5.22b, we have plotted the

same curves when ω = 1.05ω0, in which case

x(t) =
19.5
Mω2

0

sin (0.025ω0t) sin (1.025ω0t).

The larger frequency 1.025ω0 has not changed much from 1.05ω0, but the smaller
frequency has been cut in half. In addition, there is a substantial increase in the
time varying amplitude; it has more than doubled. What we are seeing in these
graphs are called beats. Beats can actually be heard when two musical instruments
produce sounds with frequencies that are very close to each other. In electronics,
this is called amplitude modulation.
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EXERCISES 5.3

1. Repeat Example 5.9 without reinitializing time for movement to the right.

2. A 0.5-kilogram mass sits on a table attached to a spring with constant 18 newtons per metre
(Figure 5.16). The mass is pulled so as to stretch the spring 6 centimetres and then released.
(a) If friction between the mass and the table creates a force of 0.5 newtons that opposes motion,

but damping is negligible, show that the differential equation determining motion is

d2x

dt2
+ 36x = 1, x(0) = 0.06, x′(0) = 0.

Assume that the coefficient of static friction is twice the coefficient of kinetic friction.
(b) Find where the mass comes to rest for the first time. Will it move from this position?

3. Repeat Exercise 2 given that the mass is pulled 25 centimetres to the right.

4. A 200-gram mass rests on a table attached to an unstretched spring with constant 5 newtons per
metre. The mass is given a velocity of 1/2 metre per second to the right. During the subsequent
motion, the coefficient of kinetic friction between mass and table is µk = 1/4, but damping is
negligible. Where does the mass come to a complete stop? Assume that the coefficient of static
friction is µs = 1/2.

5. Repeat Exercise 4 if the initial velocity is 2 metres per second.

6. A 100-gram mass is suspended from a spring with constant 4000 newtons per metre. At its
equilibrium position, it is suddenly (time t = 0) given an upward velocity of 10 metres per
second. If an external force 3 cos 100t, t ≥ 0 acts on the mass, find its displacement as a
function of time. Does undamped resonance occur?

7. Repeat Exercise 6 if the external force is 3 cos 200t.
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8. A vertical spring having constant 64 newtons per metre has a 1-kilogram mass attached to it.
An external force 2 sin 4t, t ≥ 0 is applied to the mass. If the mass is at rest at its equilibrium
position at time t = 0, and damping is negligible, find the position of the mass as a function of
time. Does undamped resonance occur?

9. Repeat Exercise 8 if the external force is 2 sin 8t.

10. A mass M , connected to a spring with constant k, sits motionless on a table. The other end of
the spring is attached to a movable support. At time t = 0, the support moves horizontally with
displacement A sin ωt, thus causing the spring to compress, and the mass to move. Assuming
no damping, and no friction between the mass and the surface along which it slides, find the
displacement of the mass when (a) ω 6=

√
k/M , and (b) when ω =

√
k/m.

11. A mass M is suspended from a vertical spring with constant k. If an external force F (t) =
A cosωt is applied to the mass for t > 0, find the value of ω that causes undamped resonance.

12. A 200-gram mass suspended vertically from a spring with constant 10 newtons per metre is set
into vibration by an external force in newtons given by 4 sin 10t, t ≥ 0. During the motion a
damping force in newtons equal to 3/2 the velocity on the mass in metres per second acts on
the mass. Find the position of the mass as a function of time t.

13. (a) A 1-kilogram mass is motionless, suspended from a spring with constant 100 newtons per
metre. A vertical force 2 sinωt acts on the mass beginning at time t = 0. Oscillations are
subject to a damping force in newtons equal to twice the velocity in metres per second. Find
the position of the mass as a function of time.

(b) What value of ω causes damped resonance? What is the amplitude of steady-state oscilla-
tions for damped resonance?

14. A mass M is suspended from a spring with constant k. Vertical motion is initiated by an external
force A cosωt where A is a positive constant. During the subsequent motion a damping force
acts on the mass with damping coefficient β.
(a) Show that the steady-state part of the solution is

xp(t) =
A(k − Mω2)

(k − Mω2)2 + β2ω2
cosωt − Aωβ

(k − Mω2)2 + β2ω2
sin ωt.

(b) Find the value of ω that gives damped resonance and the resulting amplitude of oscillations.

15. A battery of springs is placed between two sheets of wood, and the structure is placed on a level
floor. Equivalent to the springs is a single spring with constant 1000 newtons per metre. A 20
kilogram mass is dropped onto the upper platform, hitting the platform with speed 2 metres
per second, and remains attached to the platform thereafter.
(a) Find the position of the mass relative to where it strikes the platform as a function of time.

Assume that air drag is 10 times the velocity of the mass.
(b) What is the maximum displacement from where it strikes the platform experienced by the

mass?

16. Use the techniques of this section to solve Exercise 42 in Section 3.2.

17. Use the techniques of this section to solve Exercise 43 in Section 3.2.

18. A mass of 500 grams is at equilibrium suspended from a spring with constant 250 newtons per
metre. At time t = 0, the apparatus to which the top end of the spring is attached moves up
and down sinusoidally according to f(t) = 0.1 sin 2t metres, where f(t) is positive when the
apparatus is above its starting position. If damping with coefficient β = 10 acts on the mass
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during its motion, find the position of the mass as a function of time. Describe the motion of
the mass.

19. (a) In this exercise, we analyze vertical
motion of a truck as it traverses a
speed bump. The figure to the right
shows part of the truck with mass
M = 500 kilograms over a wheel.
Between the wheel and the truck body
is a spring with constant k = 1000
Newtons per metre. For the moment,
we assume that the truck has no x

y

y = 0

1

M

k

shocks to dampen oscillations. The
The truck hits the bump at time t = 0 traveling at constant speed v = 18 kilometres per
hour. The equation of the bump (in metres) is A sin πx, 0 ≤ x ≤ 1. Show that the
initial-value problem for displacement of the truck from its equilibrium position is

d2y

dt2
+ 2y = 2A sin 5πt, y(0) = 0, y′(0) = 0.

For how long is this equation valid?
(b) Find y(t).

20. A mass M , attached to the right end of a spring with constant k, rests on a horizontal table.
The left end of the spring is attached to a wall. At time t = 0 the mass is pulled to the right
a distance x0 and given velocity v0 to the right. If damping is ignored, but the coefficient of
kinetic friction between table and mass is µ, find a formula for the time when the mass comes
to an instantaneous stop for the first time.

21. Repeat Exercise 20 if the initial velocity is to the left.

22. A mass M , attached to the right end of a spring with constant k, rests on a horizontal table.
The left end of the spring is attached to a moving support. At time t = 0 the mass is pulled
to the right a distance x0 and given velocity v0 to the right. The motion of the support in the
x-direction is described by A sin ωt, where A > 0 is a constant. If damping is ignored, find the
position of the mass in the nonresonant case. What value of ω causes undamped resonance?

23. A cube 1 metre on each side and with density 1200 kilograms per cubic metre is placed with
one of its faces in the surface of a body of water. When the cube is released from this position
and sinks, it is acted upon by three forces, gravity, a buoyant force equal to the weight of water
displaced by the submerged portion of the cube (Archimedes’ principle), and a resistive force
equal to twice the speed of the object. Find the depth of the bottom surface of the cube as a
function of time from the instant the cube is released until it is completely submerged. Plot a
graph of the function.

24. A cube 1 metre on each side and with density 500 kilograms per cubic metre is placed with
one of its faces in the surface of a body of water. When the cube is released from this position
and sinks, it is acted upon by three forces, gravity, a buoyant force equal to the weight of water
displaced by the submerged portion of the cube (Archimedes’ principle), and a resistive force
equal to twice the speed of the object. Find the depth of the bottom surface of the cube as a
function of time. Plot a graph of the function.

25. A cable hangs over a peg, 10 metres on one side and 15 metres on the other. Find the time for
it to slide off the peg
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(a) if friction at the peg is negligible.
(b) if friction at the peg is equal to the weight of 1 metre of cable.
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5.4 LCR Circuits

If a resistor with resistance R, an inductor with inductance L, and a capacitor with
capacitance C are connected in series with an electromotive force E(t) (Figure 5.23),
and the switch is closed, current flows in the circuit and charge builds up on the
capacitor. If at any time t, Q is the charge on the capacitor and I is the current in
the loop, then Kirchhoff’s voltage law states that

L
dI

dt
+ RI +

Q

C
− E(t) = 0, (5.26)

where LdI/dt, RI, and Q/C represent voltage drops across the inductor, resistor,
and capacitor, respectively. If we substitute I = dQ/dt, then

L
d2Q

dt
+ R

dQ

dt
+

Q

C
= E(t), (5.27)

a linear second-order differential equation for Q(t). Alternatively, if we differentiate
this equation, we obtain

L
d2I

dt2
+ R

dI

dt
+

I

C
= E′(t), (5.28)

a linear second-order differential equation for I(t).
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The similarity between differential equations 5.7 and 5.27 is unmistakable:

M
d2x

dt2
+ β

dx

dt
+ kx = F (t),

L
d2Q

dt2
+ R

dQ

dt
+

1
C

Q = E(t).

Each of the coefficients M , β, and k for the mechanical system has its analogue
L, R, and 1/C in the electrical system. This suggests that LCR circuits might be
used to model complicated physical systems subject to vibrations, and conversely,
that mass-spring systems might represent electrical systems. A full discussion of
LCR circuits would parallel that in Sections 5.1–5.3. There should be no need to
repeat all discussions in detail, and we therefore choose to do some representative
problems.

Example 5.13 At time t = 0, a 25-Ω resistor, a 2-H inductor, and a 0.01-F capacitor are connected
in series with a generator producing an alternating voltage of 10 sin 5t, t ≥ 0 (Figure
5.24). Find the charge on the capacitor and the current in the circuit if the capacitor
is uncharged when the circuit is closed.
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Solution The differential equation for the charge Q on the capacitor is

2
d2Q

dt2
+ 25

dQ

dt
+ 100Q = 10 sin 5t,

to which we add the initial conditions

Q(0) = 0, Q′(0) = I(0) = 0.

The auxiliary equation is 2m2 + 25m + 100 = 0 with solutions

m =
−25 ±

√
625 − 800
4

=
−25± 5

√
7i

4
.

Consequently, a general solution of the associated homogeneous equation is

Qh(t) = e−25t/4

(
C1 cos

5
√

7t

4
+ C2 sin

5
√

7t
4

)
.

To find a particular solution of the nonhomogeneous equation by undetermined
coefficients, we set Qp(t) = A sin 5t + B cos 5t. Substitution into the differential
equation gives

2(−25A sin 5t − 25B cos 5t) + 25(5A cos 5t − 5B sin 5t) + 100(A sin 5t + B cos 5t) = 10 sin 5t.

This equation requires A and B to satisfy

50A − 125B = 10, 125A + 50B = 0,

the solution of which is A = 4/145, B = −10/145. A particular solution of the
differential equation is therefore

Qp(t) =
2

145
(2 sin 5t − 5 cos 5t),

and a general solution is

Q(t) = e−25t/4

(
C1 cos

5
√

7t

4
+ C2 sin

5
√

7t

4

)
+

2
145

(2 sin 5t − 5 cos 5t).

The initial conditions require

0 = Q(0) = C1 −
10
145

, 0 = Q′(0) = −25
4

C1 +
5
√

7
4

C2 +
20
145

,

and these imply that C1 = 10/145 and C2 = 34/(145
√

7). Consequently, the charge
on the capacitor, in coulombs, is

Q(t) =
e−25t/4

145
√

7

(
10

√
7 cos

5
√

7t

4
+ 34 sin

5
√

7t

4

)
+

2
145

(2 sin 5t − 5 cos 5t).

The current in the circuit, in amperes, is

I(t) =
dQ

dt
=
(
−25

4

)
e−25t/4

145
√

7

(
10

√
7 cos

5
√

7t
4

+ 34 sin
5
√

7t
4

)

+
e−25t/4

145
√

7

(
−175

2
sin

5
√

7t

4
+

85
√

7
2

cos
5
√

7t
4

)



284 SECTION 5.4

+
2

145
(10 cos 5t + 25 sin 5t)

= −e−25t/4

29
√

7

(
4
√

7 cos
5
√

7t

4
+ 60 sin

5
√

7t

4

)

+
2
29

(2 cos 5t + 5 sin 5t).

The solution Q(t) contains two parts. The first two terms (containing the exponen-
tial e−25t/4) are Qh(t) with constants C1 and C2 determined by the initial condi-
tions; the last two terms are Qp(t). We point this out because the two parts exhibit
completely different characteristics. For small t, both parts of Q(t) contribute sig-
nificantly, but for large t, the first two terms become negligible. In other words,
after a long time, the charge Q(t) on the capacitor is defined essentially by Qp(t).
We call Qp(t) the steady-state part of the solution, and the two other terms in
Q(t) are called the transient part of the solution. Similarly, the first two terms in
I(t) are the transient part of the current and the last two terms are the steady-state
current in the circuit.

Finally, note that the frequency of the steady-state part of either Q(t) or I(t)
is exactly that of the forcing voltage E(t).•

Example 5.14 The 25-Ω resistor, 2-H inductor, and 0.01-F capacitor of Example 5.13 are connected
in series at time t = 0 with an electromotive force E sin ωt, where E > 0 is a
constant. The charge on the capacitor is 0.01 coulombs and the current in the
circuit is zero. Find the value of ω for which the amplitude of the steady-state part
of the current is a maximum (the so-called damped resonance frequency). What is
the maximum amplitude?

Solution The steady-state current is the particular solution of the differential
equation as predicted by the method of undetermined coefficients,

Ip(t) = B sinωt + D cosωt.

Substitution into the differential equation

2
d2I

dt2
+ 25

dI

dt
+ 100I = ωE cosωt

gives

2[−ω2B sinωt − ω2D cosωt] + 25[ωB cosωt − ωD sinωt]
+ 100[B sin ωt + D cosωt] = ωE cosωt.

When we equate coefficients of terms in sin ωt and cosωt, we obtain the equations

−2ω2B − 25ωD + 100B = 0,

−2ω2D + 25ωB + 100D = ωE.

Solution of this system is

B =
25ω2E

(100− 2ω2)2 + 625ω2
, D =

ωE(100− 2ω2)
(100− 2ω2)2 + 625ω2

,
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and the steady-state current is

Ip(t) =
25ω2E

(100− 2ω2)2 + 625ω2
sin ωt +

ωE(100 − 2ω2)
(100− 2ω2)2 + 625ω2

cosωt.

The amplitude of this current is

A(ω) =

√
(25ω2E)2 + ω2E2(100− 2ω2)2

(100− 2ω2)2 + 625ω2
=

ωE√
(100− 2ω2)2 + 625ω2

.

To determine the maximum amplitude, we set

0 =
dA

dω
= E

{
1√

(100− 2ω2)2 + 625ω2
− ω[2(100− 2ω2)(−4ω) + 1250ω]

2[(100− 2ω2)2 + 625ω2]3/2

}
.

This simplifies to

4E(2500− ω4)
[(100− 2ω2)2 + 625ω2]3/2

= 0.

The positive solution is ω = 5
√

2. Maximum amplitude occurs at this frequency,
A(5

√
2) = E/25 amperes.•

EXERCISES 5.4

1. A 0.001-F capacitor and 2-H inductor are connected in series with a 20-V battery. If there is
no charge on the capacitor before the battery is connected find the current in the circuit as a
function of time.

2. At time t = 0, a 0.02-F capacitor, a 100-Ω resistor, and a 1-H inductor are connected in series.
If the charge on the capacitor is initially 5 C, find its charge as a function of time.

3. A 5-H inductor and 20-Ω resistor are connected in series with a generating supplying an os-
cillating voltage of 10 sin 2t, t > 0. What are the transient and steady-state currents in the
circuit?

4. A time t = 0 an uncharged 0.1-F capacitor is connected in series with a 0.5-H inductor and a
3-Ω resistor. If the current in the circuit at this instant is 1 A, find the maximum charge that
the capacitor stores.

5. A 25/9-H inductor, a 0.04-F capacitor, and a generator with voltage 15 cos 3t are connected in
series at time t = 0. Find the current in the circuit as a function of time. Does resonance occur?
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5.5 Beam Deflections

An important application of differential equations in structural engineering is to
determine the shape of a horizontal beam when it is subjected to various loads. By
analyzing internal forces and moments, it can be shown that the shape y(x) of a
uniform beam with constant cross section (Figure 5.25) is governed by the equation

d4y

dx4
=

F (x)
EI

(5.29)

where E is a constant called Young’s modulus of elasticity (depending on the ma-
terial of the beam), and I is also a constant (the moment of inertia of the cross
section of the beam). Quantity F (x) is the load placed on the beam; it is the
vertical force per unit length in the x-direction, placed at position x, including
the weight of the beam itself. For example, if a beam has mass 100 kilograms
and length 10 metres (Figure 5.26), then the load due to its weight is a constant
F (x) = −9.81(100/10) = −98.1 newtons per metre at every point of the beam.

x

y

Support Support

Beam

y

100 kg  beam
x10

Figure 5.25 Figure 5.26

Suppose a block with mass 40 kilograms, uniform in cross section, and length 4
metres is centred on the beam in Figure 5.26 (see Figure 5.27). It adds an additional
load of 9.81(10)=98.1 newtons per metre over the interval 3 < x < 7. The total
load is then a piecewise constant function,

F (x) =

{−98.1, 0 < x < 3
−196.2, 3 < x < 7
−98.1, 7 < x < 10.

(5.30)

x

y

100 kg beam
10

40 kg block

3 7

Figure 5.27

Heaviside unit step functions provide compact descriptions to functions like
this. The fundamental unit step function is defined by

h(x) =
{

0, x < 0
1, x ≥ 0.

(5.31)

Its graph is shown in Figure 5.28; there is a discontinuity of magnitude unity at
x = 0. (Some authors replace x ≥ 0 in this definition with x > 0 so that the
function is undefined at x = 0. The rest of this section can be developed with either
convention with minor adjustments in results.)
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1

x x

1

a

Figure 5.28 Figure 5.29

When the discontinuity occurs at x = a, the function is denoted by

h(x − a) =
{

0, x < a

1, x > a.
(5.32)

Its graph is shown in Figure 5.29.
Heaviside unit step functions provide compact descriptions to functions with

finite jump discontinuities. One of the most important is shown in Figure 5.30. It
is called a pulse function. It can be expressed algebraically in the form h(x− a) −
h(x − b), except at x = a and x = b. In the event that the height of the nonzero
portion is c rather than unity (Figure 5.31), we obtain c[h(x− a)− h(x− b)], again
except at x = a and x = b.

xa b

1

xa b

c

Figure 5.30 Figure 5.31

Pulse functions can be combined algebraically to produce step functions. The
function in Figure 5.32 is the sum of two pulse functions,

4[h(x)− h(x − 3)] + 2[h(x − 3)− h(x − 6)] = 4h(x)− 2h(x − 3) − 2h(x − 6),

except at x = 0, 3, and 6. The function in Figure 5.33 is the sum of three pulses,

3[h(x − a) − h(x − b)] + 4[h(x − b) − h(x − c)] + h(x − c)
= 3h(x − a) + h(x − b) − 3h(x − c),

except at x = a, b, and c. In future representations of piecewise defined functions
in terms of Heaviside functions, we will drop the exceptions.

x

4

2

3 6 x

4

2

a b c

Figure 5.32 Figure 5.33
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The function in equation 5.30 can be described as follows

F (x) = −98.1[h(x)− h(x − 3)] − 196.2[h(x − 3) − h(x − 7)] − 98.1[h(x − 7) − h(x − 10)]
= −98.1h(x)− 98.1h(x − 3) + 98.1h(x − 7) + 98.1h(x − 10).

Since the beam is confined to the interval 0 ≤ x ≤ 10, h(x) is always equal to unity,
and the function h(x − 10) is redundant,

F (x) = −98.1 − 98.1h(x − 3) + 98.1h(x − 7).

Accompanying differential equation 5.29 will be four boundary conditions defin-
ing the type of support (if any) at each end of the beam. Three types of supports
are common. We discuss them at the left end of the beam, but they also occur at
the right end.

1. Simple Support
The end of a beam is simply-supported when it cannot move vertically, but it is

free to rotate. Visualize that a horizontal pin perpendicular to the xy-plane passes
through a hole in the end of the beam at x = 0 (Figure 5.34). The pin is fixed,
but the end of the beam can rotate on the pin. In this case, y(x) must satisfy the
boundary conditions

y(0) = y′′(0) = 0. (5.33a)

x

y

Pin

x

y

Figure 5.34 Figure 5.35
2. Built-in End
If the end x = 0 of the beam is permanently fixed in a horizontal position, embedded
horizontally in concrete say, (Figure 5.35), y(x) satisfies

y(0) = y′(0) = 0. (5.33b)

3. Free Support (or Cantilevered)
If the end x = 0 of the beam is not supported, perhaps like the end of a diving
board, (Figure 5.36), y(x) satisfies

y′′(0) = y′′′(0) = 0. (5.33c)

x

y

x

y

10

Figure 5.36 Figure 5.37
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When two boundary conditions at each end of a beam accompany differential
equation 5.29, we have what is called a boundary-value problem. For example,
if the end x = 0 of the beam in Figure 5.27 is horizontally built-in, and the right
end is free, just like a diving board (Figure 5.37), the boundary-value problem for
deflections of the beam is

d4y

dx4
=

1
EI

[−98.1 − 98.1h(x − 3) + 98.1h(x − 7)],

y(0) = y′(0) = 0, y′′(10) = y′′′(10) = 0.

To solve this problem with the techniques of Chapter 4 is particularly uninviting.
We would solve the differential equation on the intervals 0 < x < 3, 3 < x < 7,
7 < x < 10, and match y(x), y′(x), y′′(x), and y′′′(x) at x = 3 and x = 7. An
alternative is to use the following antiderivatives of the Heaviside function:∫

h(x − a) dx = (x − a)h(x − a) + C, (5.34a)
∫

(x − a)h(x − a) dx =
1
2
(x − a)2h(x − a) + C, (5.34b)

∫
(x − a)2h(x − a) dx =

1
3
(x − a)3h(x − a) + C, (5.34c)

∫
(x − a)3h(x − a) dx =

1
4
(x − a)4h(x − a) + C. (5.34d)

Even better is the Laplace transform to be discussed in Chapter 6. Not only does it
handle discontinuous loads very efficiently, it also allows us to consider concentrated
loads, something that we cannot handle with the techniques of Chapter 4, nor with
the above formulas. In the meantime, we demonstrate the use of formulas 5.34.

Example 5.15 A uniform diving board with fixed end at x = 0 has length L and mass m. Find its
deflections.

Solution The boundary-value problem for deflections of the board is

d4y

dx4
=

1
EI

(
−9.81m

L

)
, y(0) = y′(0) = 0, y′′(L) = y′′′(L) = 0.

Four antidifferentiations of this equation give

y(x) = C1 + C2x + C3x
2 + C4x

3 − 9.81mx4

24EIL
.

The boundary conditions require

0 = C1, 0 = C2, 0 = 2C3 + 6C4L − 9.81mL

2EI
, 0 = 6C4 −

9.81m

EI
.

These imply that C3 = −2.4525mL

EI
and C4 =

1.635m

EI
, and deflections of the board

are

y(x) =
1

EI

(
−2.4525mLx2 + 1.635mx3 − 9.81mx4

24L

)
.•

Example 5.16 A uniform beam of length L has mass m. An additional mass M is distributed
uniformly over the right half of the beam. If the left end of the beam is fixed
horizontally and the right end is simply-supported, find deflections of the beam.
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Solution The load on the beam can be written in terms of Heaviside functions
as

F (x) = −9.81m

L
− 9.81M

L/2
[h(x − L/2)− h(x − L)].

Because h(x − L) = 0 for 0 < x < L, we can simplify this to

F (x) = −9.81m

L
− 19.62M

L
h(x − L/2).

With this, the boundary-value problem for deflections of the beam is

d4y

dx4
=

1
EI

[
−9.81m

L
− 19.62M

L
h(x − L/2)

]
, y(0) = y′(0) = 0, y(L) = y′′(L) = 0.

Four integrations of this equation using equations 5.34 give

y(x) = C1 + C2x + C3x
2 + C4x

3 − 9.81mx4

24EIL
− 19.62M

24EIL
(x − L/2)4h(x − L/2).

The boundary conditions require

0 = C1, 0 = C2, 0 = C1 + C2L + C3L
2 + C4L

3 − 9.81mL3

24EI
− 9.81M

12EIL
(L − L/2)4,

0 = 2C3 + 6C4L − 9.81mL

2EI
− 9.81M

EIL
(L − L/2)2.

These imply that

C3 = −9.81mL

16EI
− 21(9.81)ML

384EI
, C4 =

5(9.81)m
48EI

+
23(9.81)M

384EI
.

Deflections of the beam are

y(x) =
[
−9.81mL

16EI
− 21(9.81)ML

384EI

]
x2 +

[
5(9.81)m

48EI
+

23(9.81)M
384EI

]
x3

− 9.81mx4

24EIL
− 19.62M

24EIL
(x − L/2)4h(x − L/2)

=
9.81

384EIL

[
−(24m + 21M)L2x2 + (40m + 23M)Lx3

− 16mx4 − 32M(x − L/2)4h(x − L/2)
]
.•

With the exception of Exercises 31 and 32 in Section 4.5, this is our first en-
counter with linear differential equations that have discontinuous nonhomogeneities.
We noted in Section 4.1, that when nonhomogeneity F (x) in differential equation
4.1 is continuous (as are all the coefficient functions), then the solution of the dif-
ferential equation has continuous derivatives up to and including order n. If we
examine the solution of Example 5.16, we find that its first three derivatives are
continuous, but not the fourth. In general, a finite discontinuity in the nonhomo-
geneity of an nth-order differential equation is reflected in a finite discontinuity in
the nth derivative of the solution.

EXERCISES 5.5
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1. Find deflections of a uniform beam with mass m and length L when both ends are simply
supported.

2. Repeat Exercise 1 if both ends of the beam are fixed horizontally.

3. Repeat Exercise 1 if the left end of the beam is fixed horizontally and the right end is simply
supported.

4. Repeat Example 5.16 if the extra load is on the left half of the beam.

5. Repeat Example 5.16 if the extra load is over the middle half of the beam.

6. Repeat Example 5.15 if an additional mass M is distributed uniformly over the right half of the
board. What is the deflection of the right end of the board?

7. Repeat Example 5.15 if an additional mass M is distributed uniformly over the left half of the
board. How does the deflection of the right end of the board compare to that in Exercise 6?

8. Repeat Example 5.15 if an additional mass M is distributed uniformly over the middle half of
the board. How does the deflection of the right end of the board compare to that in Exercises
6 and 7?


