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ABSTRACT

Dot-matrix sequence similarity searches can be greatly speeded
up through use of a table listing all Tocations of short oligomers in
one of the sequences to find potential similarities with a second
sequence. The algorithm described finds similarities between two
sequences of lengths M and N, comparing L residues at a time, with an
efficiency of

L x M x N/(S

where S s the alphabet size, and k 1is the Tlength of the oligomer.
For nucleic acids, 1in which S=4, use of a tetranucleotide table
results in an efficiency of L x M x N/256. The simplicity of the
approach allows for a straightforward calculation of the Tlevel of

similarities expected to be found for given search parameters.
Furthermore, the storage required 1is minimal, allowing for even
large sequences to be compared on small microcomputers.

Theoretical considerations regarding the use of this search are
discussed.

INTRODUCTION

The dot-matrix similarity search algorithm [1] 1is probably the
most widely-used method for comparing two nucleic acid or protein
sequences. It can easily be conceptualized by imagining two
sequences, X and Y, being placed on the X and Y axes of a matrix. A
search program would then move down the Y axis, comparing each

substring of L contiguous characters in Y with all possible substrings
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Fig.1l. Similarity comparison between two Alul Family sequences.
The sequence on the X-axis is the human Alul Family consensus sequence
[2] and the Y-axis sequence is the mouse consensus [3]. The output is
from D3HOM, described below. Characters 1in the matrix indicate
similarities found between +the two sequences which share greater
than 52% match. The similarity range (w in the text) is 10, which
means that 10 bases on either side of the central match were compared
for each local similarity. Using the conventions of Pustell & Kafatos
[4], each character indicates the Tlevel of the similarity, in descending
increments of 2% going from A to Z. Thus, an A 1in the matrix would
represent 100% match (21/21), B= 98-99% match, ... Y=52-53% match
(11/21) etc. The presence of two diagonals indicates that the human
Alu sequence is an imperfect tandem repeat of the original ancestral
sequence which is only a monomer in the mouse.

of L characters in X. If a match 1is found which is good enough,
based on some pre-defined criterion, then a symbol (eg. a dot) s
printed at the corresponding X,Y position 1in the matrix. Where Tlong
stretches of similarity occur between the two sequences, a diagonal
Tine of symbols will be seen in the matrix (Fig.1l).

A quick inspection of most dot-matrix similarity outputs shows
that the vast majority of the area of the matrix contains either blank
space, which indicates that no local similarities were found, or
very small similarities which have probably occurred at random. Thus,
the majority of the search time 1is spent 1investigating non-similar
regions. Inspection of similar sequences leads to the observation

that sequences which are recognizable as being similar share many
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contiguous matches. Martinez, for example, has exploited this property

of similarities for the purpose of finding perfect repeats within
sequences [5]. Although his algorithm is very fast, it is of
Tittle practical value, since it will not find -imperfect
similarities. Wilbur and Lipman [6] have recognized the fact that
even imperfect similarities are Tikely +to share small regions of
perfect similarity (eg. 4 bases). They have taken the approach
of pre-screening both sequences for perfect matches, which can be
used as starting points 1in building a best-fit similarity of the
type first described by Needleman and Wunsch [7]. (Algorithms of
this type will be referred to as NWS algorithms, following the
convention of Goad and Kanehisa [8].)

The dot-matrix similarity algorithm, while not producing an
"optimal" alignment, instead presents the wuser with an over-all
view of all similarities between two sequences. It is usually an
exhaustive search, in the sense that every possible comparison between
the two sequences is made. This paper presents a non-exhaustive dot-
matrix search algorithm which uses a table of the locations of k-
mers in one sequence to find potential regions of similarity with a
second sequence. For example, a table listing the Tocations of each of
the 64 possible trinucleotides found in sequence X can serve as a guide
for finding regions 1in sequence X which could share significant
similarity with the subsequence from Y which is being sought.

THE ALGORITHM

I shall describe the algorithm 1in simple terms, using the case
of a nucleic acid sequence comparison in which k=3. Obviously, a
similar search could compare protein sequences, or use different k
values. A more rigorously defined statement of the algorithm is given
in Appendix I.

The first step 1involves construction of a table Tisting
each occurrence of the 64 trinucleotides in sequence X (Table 1). The
table will contain N-2 numbers representing the Tocations of the
trinucleotides, divided among 64 classes. The search begins at the
first trinucleotide in sequence Y. Using the table as a guide,
each occurrence of that trinucleotide 1in sequence X is Tlocated,
and the region centered on that posi tion, w nucleotides to the left
and the right, is compared with the corresponding region in sequence

Y. If the match is good enough, a symbol is printed at the point in
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Table 1.
Trinucleotide Location(s) in seq.X
AAA 13,71, 179, 204, ...
AAC 35, 72,123, 199, ...
AAG 7,50, 87, 104, 249, ...
TTG 2,40, 95,172, ...
TTT 77,94, 169, 195, ...

Table 1. Locations of the 64 possible trinucleotides 1in sequence X.
The numbers shown indicate the position of the central nucleotide in a
triplet, as they might occur in some hypothetical DNA sequence.

the matrix which corresponds to the centers of the two regions. The
process 1is repeated for each trinucleotide in sequence Y. Since each
trinucleotide occurs on the average only once every 64 bases, the

algorithm only makes N/64 searches for each triplet in Y, rather than N.

Implementation

The similarity search algorithm has been implemented in four
programs: P1HOM,P2HOM,D3HOM, and D4HOM. D3HOM compares two DNA sequences
as described above, using a trinucleotide table. A typical plot is shown
in Figl. D4HOM 1is essentially the same as D3HOM, except that it uses a
tetranucleotide table, which makes it four times faster. P1HOM and P2HOM
perform protein sequence comparisons using mono- and dipeptide tables,
respectively.

A1l programs were written in Standard Pascal [9], which is a
subset of all +implementations of Pascal. Non- standard or machine-
dependent constructs were avoided. Consequently, they should run with
only trivial changes on any computer for which Pascal 1is available. The
programs were 1initially implemented on an Applell+ computer under the
UCSD Pascal system, and have also been run using the IBM (Microsoft) 1.0
compiler on an IBM PC and using IBM Pascal/VS 1in the VM 370/CMS
environment. These programs are intended to augment the Cornell Sequence
Analysis Package [10].

Choice of working parameters

The most important factor affecting the efficiency of the algorithm

is the parameter k, the size of the oligomers used in the search table.

Since the speed of the search increases with Sk, one might be tempted to
use Tlarge k. However, since k represents the number of contiguous
matches that must exist in order for a local similarity to be found,

Targe k values will cause the algorithm to miss imperfect similarities.
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Ideally, one would Tike to choose the maximum k such that significant

Tocal similarities will still be found. Although the definition will
vary with the problem, one good way of defining "significant" 1is as a
deviation from randomness. In other words, we are not interested in
similarities so poor that they could have occurred by chance alone.

The probability p that a base or amino acid chosen independently
from sequence X will match a base or amino acid chosen 1independently
from sequence Y is given by
Eq. 1 pz_zfifj

=]
where i and j are indicies representing either the four nucleotides or
the twenty amino acids, and fi and f; are the frequencies with which the
ith or jth bases or amino acids occur in sequence X and sequence Y,
respectively. Thus, when comparing two DNA sequences with uniform base

compositions (fa=fc=fe=fr=0.25), the probability of any two bases
matching 1is 0.25. Similarly, for proteins of even amino acid
composition, the probability of a given pair of amino acids matching is
0.05. The actual base compositions of two sequences being compared will
affect the probability p that any two bases will match.

The probability that two k-mers chosen at random will match is
simply pk. The expected distance between two occurrences of k matches is

therefore 1/pk. To dinsure a thorough search, we must choose a
combination of k value and window size such that the region L bases wide
which is searched at one k-mer match will overlap the adjacent win-
dow. The average distances between k-matches for different values of p
and k are given in Table 2. For example, if the probability of a match
between two DNA sequences 1is 0.25, we expect to see a dinucleotide
match once every 16 bases in a comparison. Trinucleotides will match on
the average of once every 64 bases, and so on. These matches are due to

background similarity. Since regions which share significant similarity

must by definition have a frequency of matches which is higher than

background, similar regions will have more frequent k-mer matches, and

consequently are more likely to be found.

Table 2 illustrates how the overall Tlevel of similarity between two
sequences affects the expected distance between k-mer matches. The
knowledge of the expected frequency of k-mer matches allows us to
predict the Tevel of similarity 1likely to be missed. If we wish to
find similarities with 30% match or better, a triplet search (k=3) will
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Table 2.
Prob. of a match Avg. dist. between k-matches
P 1
pk
k= 2 3 4 5
0.050 400 8000
0.075 178 2370
0.100 100 1000
0.150 44 296
0.200 25 125
0.250 16 64 256 1024
0.300 11 37 123 412
0.350 8 23 67 190
0.450 5 11 24 54
0.600 3 5 8 13
0.700 2 3 4 6
0.900 1 1 1 2

Table 2. Average distance between occurrence of k contiguous matches as
a function of the probabilty of a single match. Calculations were done
for a range of probabilities and reasonable k values. Distance values
are rounded to the nearest integer.

necessitate the wuse of a window size w >= 19, since the average
distance between triplet matches is 37 (see Table 2). The actual choice
of k and w values will depend on the purpose of the search. For
example, if one wished only to identify overlapping regions of DNA
subclones sequenced by the shotgun strategy, then it would be perfectly
appropriate to use a 5-mer search, since p should be very high
(presumably, we're comparing identical stretches of DNA) and the
expected distance between pentanucleotide matches is 2, even if only
90% of the sequence was correct. If comparing two sequences which
hybridize only under Tow stringency conditions, we still expect no
worse than about 60% similarity. For this purpose, a k value of 4 and
a window size of 5 would be sufficient to insure that hybridizing
sequences were found. For poorer similarities which approach ran-
dom background, a 3-mer search would be necessary.

The expected distances between k-mer matches given in Table 2 were
derived under the assumption that the probability of a k-mer match at a
given point on the diagonal 1is independant of the occurrence of other k-
mer matches. However, overlapping k-mer matches will occur whenever a

run of matches greater than k is found on a given diagonal. For example,
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if a trinucleotide match is found at position (X,Y) in the matrix, the

probability that a trinucleotide match will occur at (X+1,Y+1) is p, the

probability of a single match, rather than p3. This 1is because the
trinucleotide match at (X+1,Y+1) overlaps two of the single matches in
the previous trinucleotide.

If we assume that k-mer matches occur according to a binomial

probability distribution, then the probability Pg that the next k-mer

match will occur within d bases of a given k-mer match is

k ) d )
i=1 i

where the left-hand summation represents the cumulative probability that
the next k-mer match overlaps the previous one, and the right-hand
summation represents the cumulative probability of k-mer matches beyond

the overlap. Eq.2 can be transformed into an easier to evaluate form,
P=(1-p |2 + 1 — (1— p*)*~
Eq. 3 o= (1-p’) 5t - (1-p’)

Figure 2 illustrates that P4 increases most rapidly at Tow d values, ie.
within the first few bases of a given k-mer match. This 1is due to

overlap, and leads to the prediction that k-mer matches will tend to

cluster. To find the distance by which a specified fraction (Pg) of k-

mer matches are expected to be found, Eq.3 can be solved for d, to give

P
Inl—(ldk)+1pp
Eq. 4 — -
a d= P 5 + k
In(1— p")

In other words, d 1is the distance from a given match at which the
probability of finding at least one k-match is P4q. Thus, if we wish to

approach certainty of finding at least one tetranucleotide match (P4 =
1.0) and the probability of a single base match p is 0.40, then we must
set the size of the search window to d > 21. This is much Tower than

the value which would be obtained using d = 1/pk = 39. Significantly, if
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Fig.2. Ps for tetranucleotide matches (k=4) as a function of d, for
different p values. Equation 2 was evaluated using p=0.2 (represented by
2 in the graph), p=0.3 (3), p=0.4 (4), and p=0.5 (5).

we only demand that 75% of the matches be found, d need only be greater
than 8. It appears, then, that use of the simpler calculation shown 1in
Table 2 is actually an overly conservative method for calculating search
window sizes, due to clustering of matches.

DISCUSSION
Efficiency

I have described a modification of the dot- matrix similarity search
algorithm which 1improves the efficiency of the standard algorithm by
decreasing the amount of time spent comparing regions which are not
Tikely to share significant similarity. Since the time required to

create the k-mer table is quite short (on the order of the length of
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the X-axis sequence), only the search Toop itself needs to be

considered. At each of M-(L-1) positions in sequence Y, a region of L

characters 1is compared with each of, on the average, N-(L- 1)/(Sk)
regions of L characters in sequence X. Since L 1is usually quite small
relative to N and M, the efficiency of the algorithm can be expressed as

LxMxN/(SH.

When the probability of finding random local similarities is high, or

the size of L is comparable to Sk, this algorithm will approximate to
M x N. As in most similarity searches, the slowest execution will be
in areas in which strong similarities exist.

Storage

Aside from the sequences themselves, which use M + N units of memory
(i.e. bytes), the only major storage requirement of the algorithm
described here 1is for the table of Tinked Tists used in the search.

There are N-(k-1) k-mers in sequence X, divided among s¥ elements in a
k-dimensional table, which 1is defined over an alphabet of size S. In

order to allow for the presence of unknown nucleotides (N's) or amino

acids (X's) 1in the sequences, the table must actually contain (S+1)k
elements, so that elements with one or more subscripts being N (or X)
will be set to nil. Table elements which have no unknowns will point to
a linked 1ist of all occurrences of the corresponding k-mer, or nil if
that k-mer did not occur in sequence X. Finally, each node of the Tlinked
Tist requires two fields, a position field and a pointer to the next

node, each of which will probably require two bytes. Thus, the storage

required for the table is S+D* + 4(N-(k-1)). A DNA sequence of 1000
bases will require about 4117 bytes to be encoded in a triplet table.

For Tlarger sequences, the upper 1limit to the size of the table is
not memory (except on some microcomputers), but the width of the output
page. For example, if the graph is compressed twentyfold, then each dot
or character in the matrix represents 400 nucleotide comparisons. Even
if the program 1is set up to print only the best similarity which
occurred in a given place, as in my programs and the Pustell programs,
the background will begin to overwhelm the signal when very high
compressions are used. Consequently, only part of the X-axis sequence
(eg. <=3000) will participate in the search at any given time, and it is
only for that part that the table needs to be constructed. Finally, it
should be noted that the efficiency of the algorithm is the same

regardless of which sequence is indexed in the table. Thus the memory
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used can be minimized by placing the shortest sequence on the X-axis.
Sensitivity

Because the algorithm described in this paper does not make every

possible comparison between two sequences, it may miss some Tlocal
similarities. As with all other similarity search algorithms, Tlong
regions of strong similarity are easy to find. Conversely, the most
difficult similarities to find are the poorest ones, and there 1is no
single approach best suited to finding them.

Even exhaustive searches can miss significant similarities. For
example, the heuristic search algorithm of Korn & Queen [11] builds
similarities until they can no Tonger be extended and then decides
whether they are significant enough to be printed, based on user-
defined criteria. The main drawback of this approach is that Tong
stretches which contain discontinuous regions of similarity appear as
fragmented, short similarities in the output. These often go unrecog-
nized by the user due to the fact that the "significant" similarities
are interspersed among a long listing of presumably random similarities.

NWS-type algorithms are usually exhaustive in the sense that all
possible combinations of matches and gaps are considered in generating
Tocally optimal alignments. (One exception is the Wilbur-Lipman
algorithm, which is non-exhaustive, and may miss similarities in which
large gaps occur.) In the case of poor similarities, there may be
several equally good alignments, and the best alignment may not always
be the most "significant" one. Programs which present alternative align-
ments in a non-graphic form [6,12] again leave the user with the problem
of identifying significant similarities and of connecting Tocal
similarities separated by gaps. Finally, all NWS-type algorithms require
the user to set an arbitrarily chosen penalty value for gaps. Since the
generation of gaps during evolution is due to many different
biological mechanisms (insertion, deletion, transposition, unequal
crossing over, geneconversion, DNA-repair errors, chromosomal
aberrations etc.) the results may be misleading.

One great advantage of the non-exhaustive search algorithm
described in this paper is that it Tends itself to the easy calculation
of the levels of similarities 1ikely to be missed using given search
parameters, as described above. For example, in a 4-mer search with a
window size of 12, the regions sampled will not overlap if the distances
between their centers are greater than 24. Checking Table 2, we find

that the average distance between tetranucleotide matches is 24 when the
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overall similarity is 45%. Therefore, under these search conditions, we

expect to miss many similarities of 45% or less. As dillustrated by
equation 4 and Fig.2, however, the search windows calculated in this
manner are actually a conservative approximation, since the overlap of
adjacent k-mer matches will result in a lower average distance between
k-mer matches. Thus, use of a Tlarge enough search window and a Tlow
enough minimum match 1insures that most sequences which share any
significant similarity will be compared. Although worst case similar-
ities can be hypothesized in which high levels of similarity occur with
no k-mer matches, they do not represent a significant proportion of the
theoretically possible cases.

The background of random similarities found is higher than one might
expect. Lipman et al. [13] have used Monte Carlo simulations to
demonstrate that similarities 1in overall base composition, nearest
neighbor frequencies, or Tlocal base composition can result 1in
statistically significant similarities even among randomly generated
sequences. Others have shown that sequences which are related -in
function (eg. protein coding regions [14,15] and intervening sequences
[15]) share certain statistical properties with respect to base
composition, nucleotide preference within codons, nearest neighbor
frequencies, and strand asymmetry. Hence, while there are many ways of
quantifying the statistical significance of a match, it is much harder
to evaluate 1its biological significance. It 1is 1in this borderline
area, 1in which statistical significance and biological significance do
not always agree, that non-exhaustive algorithms will miss Tlocal
similarities.

Applications
The k-mer search described in this paper seems to be applicable for
essentially any nucleic acid similarity comparison, provided that the
right search parameters are used. Unfortunately, however, it will
probably not be very useful for database searches, since the amount of
printed output would be enormous. For example, using a compression of
20 characters per nucleotide, a dot-matrix search of a 3 million
nucleotide database would produce 150,000 lines of output. For smaller
subsets of databases, use of a dot-matrix search may be feasable, and
perhaps preferable to non-graphic searches since they can be scanned
rapidly by eye.
Protein similarity searches present another set of problems.

Although for a given k size the protein search will be much faster
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(since S=20), poor similarities are more likely to be missed because the

statistical likelihood of a match is lower. As is shown in Table 2, the
average distance between dipeptide matches is 400 (assuming uniform
amino acid composition). This 1is Tonger than the 1length of many
proteins. Thus, we can not depend on random chance to cause the
algorithm to sample the two sequences frequently in regions of Tlow
similarity. While good similarities are 1likely to be found by the
dipeptide search, some very poor but statistically significant ones
will not. For cases 1in which such poor similarities must be found, a
monopeptide search (eg. P1HOM) can still speed up the search, since it
will have an efficiency 20 times faster than the L x M x N algorithm.
The monopeptide search can be considered exhaustive because it only
requires single matches. (Obviously, all similarities must have at
Teast single matches.)
Conclusion

No single search algorithm is sufficient or appropriate for all
applications. As discussed above, even exhaustive searches can miss
significant similarities, either by nature of the search itself, the
parameters used, or by the way in which the data are presented to the
user. Paradoxically, the strong points of the different algorithms are
usually also their weak points. While NWS-type algorithms are needed to
produce the best-fit similarities necessary for quantifying evolutionary
distance, the answers they give are not always the "correct" ones, and
they may cause important features of the overall similarity picture
to be overlooked. Finally, the optimal alignment will often include
internal regions which share little similarity but have been forced into
a fit. The advantage of dot-matrix searches 1is that much more data is
presented to the user, since all Tlocal similarities above a certain
Tevel are printed. The program itself makes no decisions with regards to
gaps; these are manifested to the eye as displacments of the diagonal.
The pattern recognition abilities of the human brain allow for almost
instant identification of the important features in a similarity plot.
At the same time, human pattern recognition abilities must be
considered as rather subjective and only semiquantitative.
Consequently, the best strategy for similarity searches is probably to
do the 1initial searches using a dot-matrix program, and then optimize
the similarity using an NWS search.
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APPENDIX I - FORMAL DEFINITION OF THE ALGORITHM

The sequences are represented by two arrays, SEQX and SEQY, where
SEQX[1],...,SEQX[N] represents sequence X, while SEQY[1],...,SEQY[M]
represents sequence Y. The parameter w defines the number of nucleotides
compared on either side of the central base. Thus, if w = 10 then a 21
base region will be compared at each position. If the sequences are
Tinear, SEQX[-w],...,SEQX[0] and SEQX[N+1],...,SEQX[N+w] are set to Z,
and SEQY[-w],...,SEQY[0] and SEQY[M+1],...,SEQY[M+w] are set to N. The
unknown nucleotides N and Z do not match, so other parts of the sequence
containing unknowns will not match anything. This is necessary to
prevent the discovery of false matches. For circular sequences, SEQX[-
wl,...,SEQX[0] 1is initialized to SEQX[N-w],...,SEQX[N], and
SEQX[N+1],...,SEQX[N+w] is initialized to SEQX[1],...,SEQX[w]. Sim-
ilarly, SEQY[-w],...,SEQY[0] is initialized to SEQY[M- w],...,SEQY[M],
and SEQY[M+1],...,SEQY[M+w] 1is initialized to SEQY[1],...,SEQY[w].

The trinucleotide table is stored as a 3-dimensional array

TRIPLET[n1,n2,n3] whose subscripts may be A,C,G,T, or N, but not Z.
Each element of TRIPLET is a pointer to the first element in a Tlinked-
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Tist of nodes, each of which holds an integer POS, which gives the
position of one occurrence of the trinucleotide, and NEXT, which points
to the next node in the Tist, or nil. Thus, using Table 1 as an

example, TRIPLET[A,A,C] points to a Tlist of all occurrences of AAC
in SEQX, the first of which is at position 35. For each single base
match found in a local similarity, the variable SCORE is incremented
by a value from the array SUBSCORE, such that SUBSCORE[i] 1is the value
to be added to SCORE for a match i bases from the center of the triplet.
As in the programs of Pustell [4],

SUBSCORE[i] = vf'

where v is the value for a match at the center of the triplet (at which
i=0) and 0 < f < 1. MINSCORE is the minimum score for which a
similarity will be recorded in the matrix. If f=1, then the score is
proportional to the percentage of the total comparisons made. If f <
1, then the contribution of a match decreases exponentially as a
function of its distance from the center of the triplet. As Pustell and
others have shown, weighting of matches helps decrease background
similarities.

The algorithm to compare the portion of SEQY from STARTY to FINISHY
with the portion of SEQX from STARTX to FINISHX is programmed as
follows:

MAKETABLE( STARTX, FI Nl SHX); {make trinucl eoti de table of SEQX}
for Y:= STARTY to FIN SHY do
SEARCHFOR( TRI PLET[ SEQY[ Y- 1], SEQY[ Y], SEQY[ Y+1]])

where the procedure SEARCHFOR 1is defined as follows:

prgcedure SEARCHFOR(TRI); {TRI points to 1st occurrence of triplet in SEQX}
egin
while TRI <> nil do begin
X:= TRIN. PCS; {Location of a trinucleotide in seq.X}
SCORE: = THREEMATCH; {Score for central triplet match}
LX: = X-2; RX: = X+2;{Begin conparison at 2nd posn.fromcenter}
LY: = Y-2; RY:= Y+2;
DI STANCE: =2; {Dist. fromcenter of triplet}
whi | e DI STANCE <= w do begin
if SEQX[LX] = SEQY[LY] then SCORE: = SCORE+SUBSCORE[ DI STANCE] ;
if SEQX[RX] = SEQY[RY] then SCORE: = SCORE+SUBSCORE[ DI STANCE] ;
LX:= LX-1; RX:= RX+1; LY:= LY-1; RY:= RY+1;
DI dSTANCE: = DI STANCE+1
end,;
if SCORE >= M NSCORE then print a synbol in the matrix;
TRI: = TRIN. NEXT {npve to next posn. in list, if there is one}

end
end { SEARCHFOR }

610



