
� 1993 Oxford University Press Nucleic Acids Research, 1993, Vol. 21, No. 25 5997-6003

Feature expressions: creating and manipulating sequence
datasets
Brian Fristensky
Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2,
Canada, frist@cc.umanitoba.ca

Received August 16, 1993; Revised and Accepted November12, 1993

ABSTRACT

Annotation of features, such as introns, exons and
protein coding regions in GenBank/EMBL/DDBJ
entries is now standardized through use of the
Features Table (FT) language. The essence of the FT
language is described by the relation
'expression → sequence' meaning that each FT
expression evaluates to a sequence. For example,
the expression M74750:1..50 evaluates to the first 50
bases of the sequence with accession number
M74750. Because FT is intrinsic to the database
definition , it can serve as a software- and platform-
independent lingua franca for sequence
manipulation. The XYLEM package makes it possible
to create and manipulate sequence datasets using
FT expressions. FEATURES is a program that
resolves FT expressions into their corresponding
sequences. Annotated features can be retrieved
either by feature key or by expression. Even
unannotated portions of a sequence can be retrieved
by user-generated FT expressions. Applications of
the FT language include retrieval of subsequences
from large sequence entries, generation of
chromosome models or artificial DNA constructs,
and representation of restriction maps or mutants.

INTRODUCTION
While the widespread availability of sequence databases has been
of great value to molecular biologists, most database usage is
limited to a few simple tasks: searching for entries by keyword,
retrieval of entries, and sequence similarity searches. More
sophisticated projects often require the creation of large database
subsets, representing particular taxa, organs, tissues, or other
groupings which merit comparison. One of the earliest studies of
this type analyzed 124 mRNA sequences from E.coli to infer a set
of rules for identification of ribosome binding sites [1]. More
recently, 369 Alu1 dispersed repetitive elements were categorized
into subfamilies to enable reconstruction of their evolutionary
history [2]. Such projects require not only the ability to organize
sequences into discrete groups, but also to extract specific
subsequences from each database entry for analysis of
comparable features.

A sequence query language, that is, a language in which
expressions, upon evaluation, yield sequence, would offer many
advantages in dataset construction. The sequences themselves
need not be stored, but rather, the instructions necessary to

recreate the dataset. Interestingly, the most ambitious attempts at
writing sequence query languages predate GenBank [3] itself.
Schroeder and Blattner [4] described DNA*, which permitted
concatenation and complementation of DNA sequences using a
terse syntax. Another approach was that of DELILA
(DEoxyribonucleic acid LIbrary LAnguage, [5]. DELILA
encompassed both a hierarchical syntax for description of
genomes, as well as a query language in which named features
served as reference points within a coordinate system. Because
both languages predated the current databases, they do not
contain syntax for reference to database entries. While more
recent tools have been able to parse GenBank entries for direct
use of data fields by other programs [6], automated access to the
features annotated in the Features Table has been difficult to
realize.

The development of the Feature Table language (FT) [7] as an
integral part of database annotation was a fundamental step in
making sequence data more useable because each feature in a
GenBank entry is now annotated in a standard, machineparsable
syntax. The universality of this language now makes it possible to
specify any DNA sequence using an expression, as given by the
relation

expression → sequence

This task has been implemented in the FEATURES program,
which is part the XYLEM package, to be described in this paper
(Table I). While fully accessible through a menu-driven interface,
the simplest form of the FEATURES command is

features expression > sequence

meaning that FEATURES can take a FT expression as input and
write a sequence to the output. For example, given the following
feature annotated in the GenBank entry with primary accession
number M74750:

 terminator 609..650
 /label=T7-terminator

typing the command

features M74750:T7-terminator

would return the sequence

ataaccccttggggcctctaaacgggtcttgaggggttttt

representing that part of the sequence spanning bases 609 to 650,
as identified by the field 'label=T7-terminator'.

Nucleic Acids Research, 1993, Vol. 21, No. 25 5998

Table I. List of XYLEM programs and functions.
Program Function
High-level tools
FINDKEY Search for one or more keywords in database
FETCH Retrieve one or more entries from database
FEATURES Extract features by feature key or expression

Low-level tools
SPLITDB Split a database into annotation, sequence and index
IDENTIFY Used by FINDKEY to identify entries containing keywords
GETLOC Used by FETCH to retrieve entries from a split database
GETOB Used by FEATURES to parse Feature Table expressions
UDS Update an existing dataset with new versions of entries
DBSTAT Calculate amino acid frequencies in a protein database
RIBOSOME Translate file of nucleic acid sequences into protein
SHUFFLE Given a random seed, shuffles each sequence in a file
REFORM Multiple alignment printing tool
GBUPDATE Download GenBank database by FTP; calls SPLITDB
PIRUPDATE Download PIR database by FTP; calls SPLITDB

The XYLEM tools (Table I) automate the management of
online databases, as well as the construction of sequence
database subsets. Even non-expert users should be able to
create datasets for use in multiple alignments, phylogenetic
studies, structure comparisons and other types of analyses.

METHODS
Program organization
All programs are written in Pascal using SUN Pascal 2.0, or as
Unix c-shell scripts. Presently, both Sparc binaries as well as
Pascal source code are available, and a version in C is being
prepared. The use of shell scripts has both advantages and
disadvantages. Shell scripts are easier to modify to suit local
needs than are programs in a compiled language. Also,
system-dependent code has generally been relegated to the
shell scripts, while the Pascal programs adhere strictly to the
Standard [8], and should need little or no modification
regardless of the compiler used.

The XYLEM tools work with databases formatted as
illustrated in Figure 1. SPLITDB splits a file of GenBank,
EMBL, PIR or VecBase entries into annotation (.ano),
sequence (.wrp), and an index (.ind) listing the location of each
entry in the annotation and sequence files. Splitting annotation
from sequence speeds both keyword searches in annotation
and global sequence similarity searches. Sequence files (.wrp)
produced by SPLITDB are in the format required for the
FASTA programs of W. R. Pearson [9].

XYLEM has been designed on the principle that one or
more lower-level tools can be incorporated into higher-lever
tools, creating new functionalities while at the same time
preserving the ability to use the low-level tools directly (Figure
1). All programs can be executed by supplying parameters and
filenames at the command line. As well, the higher-level
programs FINDKEY, FETCH and FEATURES can be used
interactively, either as text only applications, or as menu items
in the Genetic Data Environment (GDE) [10].

Compatibility with other databases
Although initially written to work with GenBank, FETCH and
FINDKEY, along with the programs they call, can also be
used with the PIR [11] and Vecbase [12] databases.
Adaptation for use of FEATURES with the EMBL database
[13] is in progress.

Compatibility of FEATURES with other database software
In recognition of the fact that local copies of GenBank may be
formatted for other software packages, FEATURES has been
designed to operate independently of database format. This is
possible because the process of feature extraction consists of
two steps: retrieval of entries and evaluation of expressions.
The retrieval step is implemented in FEATURES as a call to
FETCH in the form 'fetch accession-file outputfile' where
accession-file is a list of accession numbers, and the
corresponding entries are written to outputfile in standard
GenBank flatfile format. Consequently, FEATURES can work
with any software that, given a list of accession numbers,
retrieves GenBank flatfile entries. All that is required is to
replace the two lines that call FETCH with the corresponding
command for one's local system. In principle, the sequence
retrieval step could even be implemented for retrieval of
sequences from the NCBI email server, although such a
scheme might be awkward to implement reliably.

Availability
All programs are available free of charge. They may be
obtained through anonymous FTP at ftp.cc.umanitoba.ca
(130.179.16.24) in the directory psgendb. The SUN4
distribution may also be obtained by sending the author one
1.44Mb HD diskette or a 1/4 in. tape, which will be written in
tar format. Users wishing distribution on other media or for
other platforms please inquire.

IMPLEMENTATION
Creation of customized datasets
Datasets containing groups of sequences for comparison can
be created in a three step process: a) identification of entries by
keyword search b) retrieval of hits c) extraction of the
appropriate sequence fragments. As shown in Fig. 2-a, the
FINDKEY menu allows the user to either type in a single
keyword or create a list of one or more keywords. In the
example, a user wishing to find entries containing the keyword
'chitinase' has chosen to search the plant division of GenBank.
(Alternatively, a user-created dataset could have been
searched.) Two files are generated: a list of annotation lines
found (chitinase@pln.fnd), as well as a list of GenBank
LOCUS names (chitinase@pln.nam) corresponding to the hits.
When executed from GDE, these files would appear in textedit
windows.

Fundamental to the power of XYLEM is the ability to
perform operations on namefiles, which can function as virtual
datasets. Unix commands such as "comm" or "diff" can be
used to find the logical union, intersection or difference
between two namefiles. Real datasets (ie. files of entries) can
be generated from virtual datasets (ie. namefiles) using
FETCH. In Fig. 2-b, the sequences represented in the virtual
dataset created in Fig. 2-a are retrieved directly to the GDE
sequence alignment editor.

The versatility of FETCH is illustrated in the menu. Single
names or accession numbers can be typed in the menu, or a list
of names or accession numbers read from a file. Annotation
only, sequence only, or both can be retrieved. Entries can be
retrieved either from the original databases, or from user-
created datasets. When FETCH is run from GDE, output can
go directly to the sequence editor, to a textedit window, or to a

Nucleic Acids Research, 1993, Vol. 21, No. 25 5999

file.

Figure 1. XYLEM Schematic. Dashed lines describe the flow of data
(rectangles) between programs (ovals). The three shell scripts, FINDKEY,
FETCH and FEATURES (shaded ovals) each consist of calls to low level
programs and Unix commands. While not illustrated here, FEATURES calls
FETCH to retrieve sequences required to resolve FT expressions. FINDKEY
and FETCH require that the dataset be divided into annotation, sequence and
index by SPLITDB. FEATURES calls SPLITDB automatically, if needed.

Feature extraction using feature key or FT expression
Figure 2-c is an example of extraction by feature key. The
FEATURES menu has been set to extract sequence from
GenBank entry EPFCPCG (M81884), the plastid genome from
the epiphytic plant Epifagus virginiana. Note that in this
example, a file containing a single entry (EPFCPCG.gen) is
used for input. Alternatively, data could have been directly
read from GenBank. The user has specified that all regions
annotated with the 'tRNA' feature key are to be extracted.
FEATURES creates a message file, a sequence file and an
expression file resulting from the extraction of the 28 tRNAs
annotated in this entry. At the top of Figure 3 is the Feature
Table annotation for the first tRNA in this entry, and the
resultant output files, written to textedit windows by GDE,
below. The message (.msg) file is a log of feature extraction,
in which the expression is re-written as it is evaluated, along
with any qualifier lines accompanying the feature. The
resultant sequence for the tRNA is written to the sequence file
(.out), in a format compatible with the Pearson FASTA
programs [9]. As the sequence file is generated, an expression
file (.exp) containing expressions in place of sequence is also
produced.

The expression file facilitates a second means of feature
extraction, namely, extraction by expression. Given the
expression file as input, FEATURES can re-generate the
sequence file by replacing expressions with sequence. This
capability helps automate the creation and maintenance of
customized datasets. One can choose some subset of features
to be evaluated, rather than all features bearing a particular
feature key. For example, to generate only Ile-tRNAs, one
could edit out all other tRNA expressions from the expression

a

b

c

Figure 2. XYLEM menus using the Genetic Data Environment (GDE) under
SUN OpenWindows: a) FINDKEY, b) FETCH and c) FEATURES. A
separate FEATURES menu for extraction of features by expression is also
available (not shown).

file, using the qualifier fields in the message file as a guide.
The expression file could now be used in the FEATURES
program to generate the three Ile-tRNAs found in the plastid
genome.

Feature expression files also allow the user to work around
errors in database entries. By modifying the expression file, a
feature incorrectly annotated in the database entry can still be
generated correctly, pending definitive correction by database
staff.

The expressions shown in Figure 3 are formulated as base

Nucleic Acids Research, 1993, Vol. 21, No. 25 6000

FEATURE TABLE ENTRYFEATURE TABLE ENTRYFEATURE TABLE ENTRYFEATURE TABLE ENTRYFEATURE TABLE ENTRYFEATURE TABLE ENTRYFEATURE TABLE ENTRYFEATURE TABLE ENTRYFEATURE TABLE ENTRY

 tRNA complement(join(70023..70028,1..69))
 /product="transfer RNA-His"
 /gene="His-tRNA"
 /label=anticodon gtg
 /note="anticodon gtg"

GDE OUTPUT WINDOWSGDE OUTPUT WINDOWSGDE OUTPUT WINDOWSGDE OUTPUT WINDOWSGDE OUTPUT WINDOWSGDE OUTPUT WINDOWSGDE OUTPUT WINDOWSGDE OUTPUT WINDOWSGDE OUTPUT WINDOWS

Figure 3. Sample FEATURES output windows generated using GDE. The
tRNA annotated at top is one of 28 tRNAs extracted from the E.virginiana
plastid genome using the feature key 'tRNA'. Corresponding parts of
sequence (top), expression (middle) and message (bottom) files are shown.
The '@' in the .exp file is used to indicate an expression, and is not part of the
FT language.

ranges, that is, using numerical coordinates. However, the FT
language provides the means for citing individual features by
their 'label' qualifier fields. For example, the protein coding
sequence annotated in Figure 4 could be retrieved by label,
using the expression M60287:ORF2. Ideally, all features
should be citable by label. However, the databases do not
always create label fields for each feature. To overcome this
problem, FEATURES allows a feature to be cited in any of
several ways. In addition to labels and absolute base ranges,
features can also be cited by qualifier lines, provided that the
qualifier line used is unique within an entry. Thus the feature
shown in Figure 4 could be retrieved using any of the
expressions listed.

Segmented features
GenBank features may be pieced together using

subsequences from other entries, a process which might be
thought of as nesting of features. While it is the policy of the
major databases to avoid creating entries with more than two
levels of nesting, FEATURES is capable of handling any level
of nesting. The entry ASYPIGG6 (M38624) describes the
green visual pigment gene of the fish Astyanax fasciatu.
Because this is a very large gene, only the exons and splice

FEATURE TABLE:FEATURE TABLE:FEATURE TABLE:FEATURE TABLE:FEATURE TABLE:FEATURE TABLE:FEATURE TABLE:FEATURE TABLE:FEATURE TABLE:

 CDS 305..640
 /gene="flaL"
 /label=ORF2
 /note="flaD (sin) homologue; putative
 /codon_start=1

EQUIVALENT EXPRESSIONS:EQUIVALENT EXPRESSIONS:EQUIVALENT EXPRESSIONS:EQUIVALENT EXPRESSIONS:EQUIVALENT EXPRESSIONS:EQUIVALENT EXPRESSIONS:EQUIVALENT EXPRESSIONS:EQUIVALENT EXPRESSIONS:EQUIVALENT EXPRESSIONS:

 M60287:305..640
 M60287:ORF2
 M60287:/label=ORF2
 M60287:/gene="flaL"
 M60287:/note="flaD (sin) homologue; putative"

Figure 4. A sample feature table entry and equivalent expressions. The first
two expressions adhere strictly to the FT definition, while the last three are
extensions allowed by GETOB.

FEATURE TABLE: FEATURE TABLE: FEATURE TABLE: FEATURE TABLE: FEATURE TABLE: FEATURE TABLE: FEATURE TABLE: FEATURE TABLE: FEATURE TABLE:

CDS join(M38619:160..256,M38620:11..307,
 M38621:11..179,M38622:11..176,
 M38623:11..250,11..103)
 /product="green visual pigment"
 /gene="G101"
 /codon_start=1

AFTER FIRST PASS:AFTER FIRST PASS:AFTER FIRST PASS:AFTER FIRST PASS:AFTER FIRST PASS:AFTER FIRST PASS:AFTER FIRST PASS:AFTER FIRST PASS:AFTER FIRST PASS:

>ASYPIGG6:CDS1
@M38619:160..256
@M38620:11..307
@M38621:11..179
@M38622:11..176
@M38623:11..250
ttccggagctgtatcatgcagctgtttggaaagaaggtggaggatgcatc
agaggtttccggctctaccacagaagtttctacagcctcgtaa

AFTER SECOND PASS:AFTER SECOND PASS:AFTER SECOND PASS:AFTER SECOND PASS:AFTER SECOND PASS:AFTER SECOND PASS:AFTER SECOND PASS:AFTER SECOND PASS:AFTER SECOND PASS:

>ASYPIGG6:CDS1
atggccgcacacgagcctgtgttcgccgcccggcgccacaatgaagacac
cacaagggagtctgcatttgtctacacaaatgctaataatacaagag
atccttttgaaggaccaaactatcacattgcccctcgatgggtctacaac
gtatcatccttatggatgatctttgttgtcattgcatcagtcttcactaa
tggtttggtaattgtagcaacagcaaagttcaagaagctgcgacaccctc
taaactggattctggtaaacctggctatagccgatctcggggagacagtt
cttgccagcacaatcagtgtcatcaaccagatcttcggctacttcatcct
tggacacccaatgtgcgtttttgaggggtggacggtgtctgtctgtg
gtatcacagctctgtggtctctgactataatctcctgggagcgctgggtg
gttgtgtgcaagccatttggaaatgttaaattcgatggcaaatgggcagc
aggtggcatcatcttctcctgggtttgggccatcatctggtgcacccctc
caatctttggctggagcag
gtactggccccatggtctgaagacatcctgtggccctgatgtgttcagtg
gcagtgaggatccaggagtggcctcctacatgatcaccctaatgcttacc
tgctgtattcttcctctgtccatcattatcatttgctacatttttgtctg
gagtgccatccaccag
gtcgcccagcagcagaaagactcagagtccactcagaaggcagagaagga
agtgtccaggatggtggtagtgatgatccttgcctttattgtgtgctggg
gaccatatgcctcctttgccaccttctctgcagtgaacccaggttatgcc
tggcacccactggcagccgctatgcccgcttacttcgccaagagtgccac
catctacaatcccatcatttacgtcttcatgaaccgccag
ttccggagctgtatcatgcagctgtttggaaagaaggtggaggatgcatc
agaggtttccggctctaccacagaagtttctacagcctcgtaa

Figure 5. Evaluation of segmented features.

junctions have been sequenced, and the sequence split into
several entries, one for each exon. Such an entry is annotated
as 'SEGMENTED'. To specify the entire protein coding
sequence (CDS), ASYPIGG6 contains the feature shown at the
top of Figure 5.

To create this coding sequence, sequences from five
different entries must be joined with bases 11..103 from
ASYPIGG6. FEATURES accomplishes this task in a two step
iterative process. First it evaluates as much of the expression
as possible within the entry itself, such that after the first pass
through the data the .out file would contain unresolved

Nucleic Acids Research, 1993, Vol. 21, No. 25 6001

misc_feature X13383:1..734
 /label=drr49a_cDNA
unsure "aa"
 /label=polyA_tail
 /note="About 50bp but precise length unknown"
misc_feature "tgcagg"
 /evidence=EXPERIMENTAL
 /label=Pst_to_Sal
 /note="pUC9 polylinker, from T-tailed PstI site to
 SalI"
misc_feature X52331:join(735..2958,1..719)
 /label=KSm13_Sal_H3
 /note="Bluescript KSm13+/SalI/HindIII cut"
misc_feature "agcttggctgcacccccccccccccccccc"
 /label=polyC_tail
 /note="pUC9 polylinker from HindIII to C-tailed
 PstI site"
contig join(drr49a_cDNA,polyA_tail,Pst_to_Sal,KSm13_Sal_H3,
 polyC_tail)
 /organism="Escherichia coli"
 /plasmid="pI49KS"
 /label=pI49KS

Figure 6. Features Table for a synthetic sequence. A cDNA was originally
cloned into the PstI site of pUC9 using poly-dC and poly-dT tailing. The
insert was excised using SalI and HindIII and recloned into the
corresponding sites in Bluescript KSm13+. In this entry, the first five
features encode the components of the plasmid, while the 'contig' feature
joins them to create the final construct. The 'contig' feature key is an
extension of the FT definition understood by GETOB.

contig join(J01619:1..13063,poly("n",7140),
 J03939:1..1363,poly("n",14380),
 X02306:complement(1..1622),poly("n",14710),
 J04423:1..5793,poly("n",22500),
 X03722:1..2400,poly("n",123750),
 one-of(X05017:complement(1..1854),X05017:1..1854))
 /label=Eco_contig8
 /map=763.4-950.6kb
contig join(V00352:1..2412,poly("n",28800),M15273:1..3409)
 /label=Eco_contig9
 /map=972.9-1001.7kb
contig join(X02826:1..1357,poly("n",13540),
 J01654:complement(1..2270))
 /label=Eco_contig10
 /map=1016.5-1031.4kb
chromosome join(Eco_contig8,poly("n",22300),
 Eco_contig9,poly("n",14800),
 Eco_contig10)
 /label=Ecoli_chromosome
 /partial

Figure 7. FT representation of chromosomes and contigs. The feature keys
'contig' and 'chromosome', and the operator 'poly' are extensions to the FT
definition that are understood by GETOB. poly(expression,x) is evaluated to
mean that the expression is repeated x times. The part of the E. coli
chromosome represented in this example runs from 763.4 - 1031.4kb, using
data from [14].

expressions and sequence from ASYPIGG6. Next, accession
numbers from unresolved expressions (denoted by '@') are
used to retrieve entries from the database. In the second pass,
the remaining expressions in the .out file are evaluated and
replaced by sequence, with line breaks between each sequence
region inserted for clarity. Since evaluation of an expression
could potentially return another expression, FEATURES can
iterate the process as many times as necessary to until no
unresolved expressions remain. Any expressions that can not
be resolved are 'commented out' of the file, meaning that a
semicolon would be placed in front of the '@' to prevent
FEATURES from looping infinitely, and a warning message
would appear in the message file.

APPLICATIONS
Customized entries
It is possible to describe any sequence as a FT expression. FT
expressions allow the construction of 'metaentries', that is,
entries containing little or no sequence, with references to
other entries, thereby specifying larger features. A feature

table documenting the construction of a recombinant plasmid,
as well as specifying FT expressions to generate its sequence,
is shown in Figure 6.

FT expressions could be included in publications describing
synthetic sequences such as cloning vectors or other
recombinant constructs, providing an unambiguous definition
of which fragments are present in the vector, as well as an easy
formula for reconstructing the vector's sequence. Laboratories
which make large numbers of synthetic constructs could
maintain a database of metaentries documenting constructs in
a precise and universally understood fashion. When plasmids
are sent to other labs, an accompanying metaentry file would
make it possible for the recipient to precisely reconstruct the
plasmid sequence. When modifications are made to the
plasmid, a new metaentry can easily be generated from the
original to document those modifications.

The example in Figure 6 also illustrates the need for new
feature keys to be added to the FT language definition to
accommodate synthetic sequences. In place of 'contig', for
example, the feature key 'plasmid' might be appropriate.

Working with very large sequences
The representation of large objects, such as chromosomes, will
require increasingly complex descriptions, and often a merging
of many pre-existing entries to form a larger entry. There are
problems, however, with merging entries: a) absolute
coordinates of virtually all features will have to be changed to
reflect being part of a larger sequence b) direct merger of
smaller entries would result in very long sequences that may
be inconvenient to work with. Figure 7 is an example of how
a portion of the E. coli chromosome might be represented in a
metaentry. First, segments of the chromosome known to be
contiguous are annotated as 'contig's, with spacing given by
the poly operator. The chromosome, in turn, can be built by
joining contigs. In this example, long stretches of n's serve as
place holders for unsequenced regions. It is worth noting that
the use of labels in these expressions means that changes in
one feature do not necessarily require changes in higher-level
features that use that feature. For example, if additional
sequence entries were added to the feature labelled 'contig8',
the chromosome feature would not need to be changed.
 As larger and larger entries are assembled from many
smaller entries, it becomes less convenient to work with
individual sequence entries. That is, using conventional
sequence tools, it is much easier to find and extract a tRNA
sequence when it is the only one in the entry, than it is to find
one of many tRNAs in a feature table, and to extract that
particular sequence. As illustrated in the Figure 2, any tRNA
in the E. virginiana plastid genome could easily be extracted
using a simple feature expression.

Restriction maps
Because there is no standard way of representing restriction
maps, the ability to communicate large maps such as the E.
coli genome [15] in a computer-readable fashion is limited. As
described above, the poly operator makes it possible to
specify spacing between regions of known sequence,
suggesting that feature expressions could be used to represent
restriction maps. Figure 8 demonstrates the encoding of a
restriction map into the FT language. Since this expression

Nucleic Acids Research, 1993, Vol. 21, No. 25 6002

 contig join("gaattc",poly("n",1200),"aagctt",
 poly("n",3430),"gaattc")
 /label=geneX

Figure 8. FT representation of restriction maps.

FEATURE TABLE:FEATURE TABLE:FEATURE TABLE:FEATURE TABLE:FEATURE TABLE:FEATURE TABLE:FEATURE TABLE:FEATURE TABLE:FEATURE TABLE:

 mutation replace(37308,"c")
 /label=cIam504
 /note="c in cIam504, g in wild-type"
 mutation replace(38302,"a")
 /label=cin-1
 /note="a in cin-1 , g in wild-type"
 mutation replace(45352,"a")
 /label=sam7
 /note="a in sam7 , g in wild-type"
 mutation replace(35940,"a")
 /label=rex209
 /note="a in rex209 , g in wild-type"

EXPRESSION:EXPRESSION:EXPRESSION:EXPRESSION:EXPRESSION:EXPRESSION:EXPRESSION:EXPRESSION:EXPRESSION:

 J02459:group(1..48502,cIam504,cin-1,sam7,rex209)

Figure 9. FT representation of mutations in LAMBDA (J02459). For
illustrative purposes, 'label' fields have been added, and errors in the original
annotation corrected.

directly evaluates to a DNA sequence, any restriction map
program that can read a sequence can make use of the
information encoded in this fashion. Representation as an
expression takes up minimal space, compared to bit-mapped
graphics or the resultant sequence. Furthermore, as additional
sequence or restriction site data becomes available, the
expression can be modified to create an improved model of the
sequence.

Mutants
The FT language provides the 'replace' operator as a means of
representing changes in sequences, such as allelic variations or
corrections to old versions of sequences. While replace is not
extensively used in the database, it potentially simplifies the
representation of sequence variants in a simple fashion. A
sample metaentry representing mutations in the Lambda phage
genome is shown in Figure 9. Each mutation, denoted by a
unique label field, is annotated with an expression which, upon
evaluation, changes the reference sequence to the mutant
sequence. Below the metaentry is a FT expression that would
generate a Lambda mutant of the genotype cI, cin sam rex.
Entries constructed in this manner make it trivial to generate a
model of essentially any genotype, based on the reference
sequence. Only one reference sequence would need to be
stored in the database if mutations were annotated in this
fashion.

DISCUSSION

The FT language can serve as a platform-independent
language for nucleic acid sequence manipulation. It is at the
same time human-readable and machine-parsable. Since FT
expressions refer only to database entries, they can be

evaluated without the use of filenames or other system-
dependent conventions. Even the format in which the database
is stored, or its physical location, whether local or across a
network, is irrelevant to the evaluation of FT expressions. If
written with strict adherence to the FT definition, any program
that evaluates FT expressions should return the same sequence.
As a case in point, GenBank is now maintained at the National
Center for Biotechnology Information (NCBI) as part of the
GenInfo Backbone, using the Abstract Syntax Notation
(ASN.1) [16]. GenBank flatfiles represent a report containing
only a subset of information present in the GenInfo backbone.
However, because all Features Table information is present in
GenInfo, it should be straightforward to write a program
comparable to FEATURES that extracts features from
GenInfo.

The XYLEM tools are versatile and easy to use. High-level
programs such as FINDKEY, FETCH and FEATURES can be
run as Unix commands with options specified on the command
line. This facilitates their use in combination with other
software tools, such as GDE, which provides a graphic user
interface. Command line execution is particularly useful in
Unix, where output of one command can be piped into another
command. Thus,

features M60287:ORF2 | ribosome

will cause the feature labelled 'ORF2' in entry M60287 to be
evaluated, and the resultant sequence translated by the
RIBOSOME program. At the same time, these high level tools
have menu-driven user interfaces that can run on any text-only
terminal. Where necessary, the low-level tools called by these
high-level tools can also be directly accessed as Unix
commands.

XYLEM provides a comprehensive set of tools for
managing large databases for general use, as well as creating
datasets customized for answering specific biological
questions. While designed to automate dataset creation,
human intervention is possible at all phases of the process.
Upon the initial retrieval of hits from a FINDKEY search, the
namefile can be edited to eliminate undesired entries. After the
initial dataset has been created by FETCH, further operations
can create additional datasets. For example, a study of nuclear-
encoded plastid proteins might begin by using FINDKEY to
identify all entries bearing the "transit_peptide" feature key. A
subsequent search of the resultant dataset might eliminate
mitochondrial entries while retaining plastid entries.
Overlapping virtual datasets, consisting of LOCUS names or
accession numbers could be created by grouping entries by
species, or by function (eg. location in thylakoid membranes
vs. lumen). FEATURES could be used to create separate files
of transit peptides (transit_peptide) or mature peptides
(mat_peptide). Inspection of the message file provides detailed
information on each feature extracted, in the form of feature
qualifier lines. Along with the expression itself, the qualifier
lines can aid in the decision making process on use of the data,
as in the case of pseudogenes or partial sequences that might
need to be omitted from the dataset. At the same time, the
message file has proven very useful in uncovering errors in
database entries. Erroneous or otherwise undesired FT
expressions can be deleted or corrected to allow generation of

Nucleic Acids Research, 1993, Vol. 21, No. 25 6003

the final dataset. Thus implemented, the XYLEM tools
provide both a high level of automation, while at the same
time making the process of human intervention quick and
painless.

The generality of the FT language makes it useful even for
working with data that has not been stored in public
databases. Customized entries can serve as a precise definition
of a recombinant construct which can be used to automatically
generate the actual sequence. FT expressions take up
negligible space, as compared to the sequence itself, and can
be modified more easily. Extensions to the FT language
allowed by GETOB facilitate the construction of models of
large genomic regions. Even where little or no actual sequence
data is available, FT expressions can still be used to represent
restriction maps. Their utility as a means of documenting
mutations has also been demonstrated.

It has already been shown that the FT language still lacks
some capabilities necessary for describing many types of
molecules. One important shortcoming of the FT language is
the lack of syntax for relative coordinates. For example, one
might wish to retrieve all introns from a set of entries,
accompanied by 25 bases of flanking sequence at both the 5'
and 3' ends. In DELILA [5], the command might read

GET FROM INTRON BEGINNING - 25 TO INTRON END +25

While comparable FT expressions could be constructed using
base ranges, FT syntax allows no general solution.

The FT language has additional inadequacies. For example,
while the power of labels has been demonstrated in this paper,
there is still no universal convention for creating labels that are
unique and stable within the database. One possible solution
would be for labels to be replaced by unique ASN.1 tags. In
any case, protection of feature expressions from change
demands that all features have labels, and features referring to
other sequences use labels instead of base ranges. For this and
other reasons, the FT language needs to undergo further
evolution to realize its full potential.

I have demonstrated that the FT language, if used to its
fullest by sequence annotators, can make the difference
between data being merely human readable, to becoming
computer-parsable. While the FT language may not be the last
word in sequence annotation, it is important to recognize that
even an imperfect standard, if used, opens the database for
automated access in a way that a free text annotation can not.
Additionally, coding of features into a computer-parsable form
means that, should some better feature description language be
incorporated into the databases in the future, existing
expressions can be translated into the new language
automatically.

ACKNOWLEDGEMENTS
This work owes a debt to the efforts of Thomas Schneider and
Gary Stormo, who first articulated the unbreakable link
between database definition and sequence query languages, as
well as many of the fundamental ideas developed here. During
the initial stages of this work the author was supported by a
postdoctoral fellowship from the North Carolina
Biotechnology Center, using a Unix 3b2 workstation donated
by AT&T. Latter stages of the work were supported by the

Natural Sciences and Engineering Research Council of
Canada, Operating Grant OGP0105628, as well as the Bank of
Nova Scotia and the University of Manitoba Faculty of
Agriculture Endowment Fund. Thanks to Kathy Norman and
Pat Macdonald for providing computer support services, and to
Stuart Brown and Sandhya Tewari for their comments on the
manuscript.

REFERENCES

1. Stormo, G.D., Schneider, T.D and Gold, L.M. (1982) Characterization
of translational initiation sites in E.coli. Nucl. Acids Res. 10,
2971-2996.

2. Jurka, J. and Milosavljevic, A. (1991) Reconstruction and analysis of
human Alu genes. J. Mol. Evol. 32, 105-121.

3. Burks, C., Cassidy, M., Cinkosky, M.J., Cumella, K.E., Gilna, P.,
Hayden, J.E-D., Keen, G.M., Kelley, T.A., Kelly, M., Kristofferson, D.,
and Ryals, J. (1991) GenBank. Nucl. Acids Res. 19 (Suppl), 2221-2225.

4. Schroeder, J.L. and Blattner, F.R. (1982) Formal description of a DNA
oriented computer language. Nucl. Acids Res. 10, 69-84.

5. Schneider, T.D., Stormo, G.D., Haemer, J.S. and Gold, L. (1982) A
design for computer nucleic-acid sequence storage, retrieval and
manipulation. Nucl. Acids Res. 10, 3013-3024.

6. Read R.L., Davison, D., Chappelear, J.E. and Garavelli, J.S. (1992)
GBPARSE: a parser for the GenBank flat-file format iwth the new
feature table format. CABIOS 8, 407-408.

7. The DDBJ/EMBL/GenBank Feature Table: Definition, Version 1.04,
September 1, 1992.

8. Jensen, K. and Wirth, N. (1974) Pascal User Manual and Report.
Springer Verlag.

9. Pearson, W.R. (1990) Rapid and Sensitive Sequence Comparison with
FASTP and FASTA. Meth. Enz. 183, 63-98.

10. Smith, S. (1993) Genetic Data Environment 2.2, unpublished.
11. Sidman, K.E., George, D.G., Barker, W.C. and Hunt, L.T. (1988) The

protein identification resource (PIR). Nucl. Acids Res. 16, 1869-1871.
12. Pfeiffer, F. and Gilbert, W.A. (1988) Vecbase, a cloning vector

sequence data base. Protein Sequences & Data Analysis 1, 269-280.
13. Cameron, G. (1988) The EMBL Data Library. Nucl. Acids Res. 16,

1865-1867.
14. Rudd, K. E. (1990) Alignment of Escherichia coli K12 DNA sequences

to a genomic restriction map. Nucl. Acids Res. 18, 313-321.
15. Kohara, Y., Kiyotaka, A., and Isono, K. (1987) The physical map of the

whole E.coli chromosome: Application of a new strategy for rapid
analysis and sorting of a large genomic library. Cell 50, 495-508.

16. Ostell, J. (1990) The GenInfo ASN.1 Syntax: Sequences. Tech. Rep. 1,
National Center for Biotechnology Information, National Library of
Medicine, USA.

