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SHORT COMMUNICATION

Database Bias and the Identification of
Protein Coding Sequences

MICHAEL E. MOODY* and BRIAN FRISTENSKY†,‡

ABSTRACT

A simple quantitative test for the probability that an open reading frame actually codes for a protein has
been described by Tramontano and Macchiato (1986). However, their test is only valid for the special case in
which both coding and noncoding sequences are represented equally. We present a generalized adaptation of
their method that uses estimates for the relative proportions of coding and noncoding sequences to provide a
more accurate prediction.

A COMMONLY ENCOUNTERED PROBLEM in
hypothesistestingis to distinguishbetweentwo alternatives
basedupon some measurementfor which the alternatives
differ only in their distribution of the quantitymeasured.For
example, measurementof � -fetoprotein level is used to
distinguish betweennormal fetusesand those with certain
neuropathies;normalandabnormalfetuses(asgroups)differ
only in thedistributionof the titer of this protein.As another
example, consider a patient who tests positive for the
presence of some disease: it is desired to know the
probability, given the test result, that the patient is actually
afflicted. Unlessthe test is a perfectpredictorof the disease,
theconditionalprobability will dependuponthe incidenceof
the disease,since the conditional chanceof a false positive
resultwill begreaterwhenthediseaseis at anebbthanwhen
it is epidemic.In general,the relative occurrenceof the two
alternativesin the population as a whole will influence
predictions based upon such measurements.

TramontanoandMacchiato(1986)haverecentlydefined
the "information value" of an open reading frame (ORF),
which they useto classifyDNA sequencesby a probabilistic
criterion, as either coding, or noncoding.Simply put, the
informationvalueof a givencodonis a measureof thedegree
to which mutation of that codon would likely result in a
changein hydrophobicity(TramontanoandMacchiato,1982,
1986).They observedthat the distributionof the information
value for coding sequencesis approximatelynormal, with a
mean of 2.25 and a standard deviation of .15; the
correspondingvalues for noncodingsequencesare 2.5 and
.25. The differences between coding and noncoding are
significant.However,their analysisfailed to accountproperly

for the relative distribution of coding vs. noncoding
sequences.We presentbelow the generalizedexpressions,
with an analysis of their applicability.
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To completeour specification,we posit that the "genome"is
an independent collection of coding and noncoding
sequences,so that the probability that a randomly selected
sequenceis noncodingis some(usually unknown)value, θ.
Thus, if V representsthe information value of a randomly
selectedsequence,it is manifestlynormally distributedwith
mean µ = (1 - θ)µ

c
+ θµ

nc
and standard deviation
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2 . If we are presentedwith a

sequence with information value v, we compute the
probability that the sequence is noncoding to be
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(1)
where P

nc
= P[nc � V = v]. The explicit inclusion of the

weight θ differentiates our treatment from that of
Tramontanoand Macchiato; their expressionis correct
(apartfrom a missingfactor of ½ in the exponentsof the
numeratorand the first term of the denominator,and the
absent power of 2 in the exponent of the second term of the
denominator)only in thespecialcaseof anequallymixed
distribution of coding and noncoding sequences, θ = ½.

Our modification, though technically simple, is of
consequence.As θ ranges from 0 (all sequencesare
coding)to 1 (all sequencesarenoncoding),theassessment
of the chancethat the sequenceis noncoding,given any
information value v must increasefrom 0 to 1; this is
reflectedin our formulation, but not that of Tramontano
and Macchiato. Since θ is generally unknown, this
diminishes the utility of their method and can lead to
seriouslyincorrectestimatesof their methodandcan lead
to seriously incorrect estimates if ignored altogether.
However, since the overall distribution of information
value (V) is normal accordingto our assumptions,if we
have an estimateof the meanµ we may rearrangeit to
obtain the following estimate of θ:

(2)

where the variableswith a caret (^) are the respective
estimates.This is also the maximum likelihood estimate
for themixing parameter.It is relativelystraightforwardto
show that

(3)

wheren
nc

andn
c
are,respectively,thenumberof noncoding

and coding sequencesin a sample.We remark that this
wouldbethelogical estimatorfor P

nc
in theabsenceof any

knowledgeof the information value of the sequence.To
usethis methodto evaluateP

nc
for a given sequencewith

information value v, it is first necessaryto estimatethe
meansandstandarddeviationsµ

nc
, µ

c
, �

nc
, and �

c
from an

appropriatesequencedatabase,estimateθ by employing
equation(3) [or (2)], and finally substituteinto (1) and
evaluatetheresultingexpression.Thedependenceof P

nc
on

v for variousvaluesof θ is shownin Fig. 1, which usesthe
meansand standarddeviationsgiven by Tramontanoand
Macchiato, quoted above.

Since databasesare inherently biased collections of
sequences(e.g., coding sequencesare disproportionately
represented),it is usefulto constrainthesequencesto some
subsetof a sequencedatabasefor which we canestimateθ,
the means µ

c
 and µ

nc
, and the standard deviations �

c
 and �

nc
.

FIG. 1. Plot of P versusinformationvaluev, for various
valuesof θ. The curvescorrespond,bottomto top, to θ =
.1, .2, .3, .5, .7, .8, and.9. Also, µ

c
= 2.25,µ

nc
= 1.5, �

c
=

.15,and �
nc

= .5.Thecurvefor θ = .5 is highlighted,asthis
correspondsto Fig. 1d of Tramontanoand Macchiato
(1986).

For example, if the sequence(with unknown coding
properties)is known to be of mitochondrialorigin, one
would calculate the estimates only for mitochondrial
sequences.To minimize the error caused by the
overlappinginformationvalue distributionsof codingand
noncodingsequences,theseparameterscan be estimated
usingORFswhoselengthsareno shorterthan that of the
unknown sequence.Although the interpretationof these
estimatesis complicatedby the nonrandomcharacterof
sequencedatabases,neglecting θ entirely can lead to
seriouserrorsin the assignmentof sequenceidentity (see
Fig. 1).

The predictionsbasedon information value can be
comparedto the TESTCODEalgorithmof Fickett (1982).
TESTCODEprovidesa predictionof coding, noncoding,
or no opinion basedon the degreeof bias detectedin
nucleotideusagewithin codons.TESTCODEhas proven
reliable in classifying sequencesfor two reasons.First,
TESTCODEtakesinto accounttherelativedistributionsof
eightparametersbetweencodingandnoncodingsequences
in an actual database.Second,Fickett has empirically
determinedthat TESTCODE'sacuracy is optimal when
usedwith ORFs longer than 200 bp. Since the decision
criteria usedby TESTCODEare fundamentallydifferent
from those used herein, our corrected form of the
information value function should provide a useful
complement to TESTCODE.

An important conclusion to be drawn from this
exerciseis that anymethodfor predictionof thefunctional
nature of an unknown sequencewill be subject to
additionalerror if it doesnot takeinto accountthe relative
proportions of the different types of sequencesin the
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population.For example, there are several methodsfor
identifying splice junctionsin DNA sequences(Nakataet
al., 1985;Iida, 1985;Staden,1984;Harr et al., 1983),but
in general these methods find more false positive
identificationsthan actual splice junctions, owing to the
fact that chancewill createmany sitesthat are similar to
true junctions.

Although the effort requiredto estimatethe necessary
populationparametersfor our analysiscan be substantial,
we feel that the resultant increasedaccuracy of the
predictive test more than justifies such effort.
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