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SHORT COMMUNICATION

Database Bias and the ldentification of
Protein Coding Sequences
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ABSTRACT

A simple quantitative test for the probability that an open reading frame actually codes for a protein has
been described by Tramontano and Macchiato (1986). However, their test isonly valid for the special case in
which both coding and noncoding sequences are represented equally. We present a gener alized adaptation of
their method that uses estimates for the relative proportions of coding and noncoding sequencesto provide a

mor e accur ate prediction.

A COMMONLY ENCOUNTERED PROBLEM in
hypothesistestingis to distinguishbetweentwo alternatives
basedupon some measuremenfor which the alternatives
differ only in their distribution of the quantitymeasuredFor
example, measurementof o-fetoprotein level is used to
distinguish betweennormal fetusesand those with certain
neuropathiesnormaland abnormalfetuses(as groups)differ
only in the distribution of the titer of this protein.As another
example, consider a patient who tests positive for the
presence of some disease: it is desired to know the
probability, given the test result, that the patientis actually
afflicted. Unlessthe testis a perfectpredictorof the disease,
the conditional probability will dependuponthe incidenceof
the disease since the conditional chanceof a false positive
resultwill be greatewhenthe diseases at anebbthanwhen
it is epidemic.In generalthe relative occurrenceof the two
alternativesin the population as a whole will influence
predictions based upon such measurements.
Tramontancand Macchiato(1986) haverecentlydefined
the "information value" of an open reading frame (ORF),
which they useto classify DNA sequence$y a probabilistic
criterion, as either coding, or noncoding. Simply put, the
informationvalueof a given codonis a measuref thedegree
to which mutation of that codon would likely resultin a
changein hydrophobicity(Tramontancand Macchiato,1982,
1986). They observedhat the distribution of the information
value for coding sequencess approximatelynormal, with a
mean of 2.25 and a standard deviation of .15; the
correspondingvalues for noncodingsequencesre 2.5 and
.25. The differences between coding and noncoding are
significant.However their analysisfailed to accountproperly
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for the relative distribution of coding vs. noncoding

sequencesWe presentbelow the generalizedexpressions,

with an analysis of their applicability.
Supposgheinformationvaluefor a codingsequencgV )

hasanunderlyingnormal(Gaussianprobability density,with
meanp., and standarddeviation (o the informationvalue for

noncoding sequencegV ) is normal, with meany and
standarddeviationg, . The respectivedistributionsfunctions
are therefore
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To completeour specification,we posit that the "genome"is
an independent collection of coding and noncoding
sequencesso that the probability that a randomly selected
sequences noncodingis some (usually unknown)value, 6.
Thus, if V representghe information value of a randomly
selectedsequenceit is manifestlynormally distributedwith
mean u = (1 - 6 + 6 _ and standard deviation

2

\e‘/((l—o)oc)2+(9 onc) . If we are presentedwith a

sequence with information value v, we compute the
probability that the sequence is noncoding to be
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nc

P =
nc

whereP = P[nc| V = v]. The explicit inclusion of the

weight 0 differentiates our treatment from that of
Tramontanoand Macchiato; their expressionis correct
(apartfrom a missingfactor of % in the exponentsof the
numeratorand the first term of the denominator,andthe
absent power of 2 in the exponent of the second term of the
denominatorpnly in the specialcaseof anequally mixed
distribution of coding and noncoding sequenées 2.

Our modification, though technically simple, is of
consequenceAs 0 rangesfrom 0 (all sequencesare
coding)to 1 (all sequencearenoncoding)the assessment
of the chancethat the sequencdas noncoding,given any
information value v must increasefrom 0 to 1; this is
reflectedin our formulation, but not that of Tramontano
and Macchiato. Since 6 is generally unknown, this
diminishesthe utility of their method and can lead to
seriouslyincorrectestimatesf their methodandcanlead
to seriously incorrect estimatesif ignored altogether.
However, since the overall distribution of information
value (V) is normal accordingto our assumptionsif we
have an estimateof the meanp we may rearrangeit to
obtain the following estimate &f

g = — ¢ )

where the variableswith a caret (*) are the respective
estimatesThis is also the maximum likelihood estimate
for the mixing parameterlt is relatively straightforwardio
show that
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wheren andn_are,respectivelythe numberof noncoding

and coding sequencesn a sample.We remark that this
wouldbethelogical estimatorfor P_in the absencef any

knowledgeof the information value of the sequenceTo
usethis methodto evaluateP._for a given sequencevith

information value v, it is first necessanto estimatethe
meansand standarddeviationsunc, K, O and o, from an

appropriatesequencedatabasegstimate® by employing
equation(3) [or (2)], and finally substituteinto (1) and
evaluatetheresultingexpressionThe dependencef P_on

v for variousvaluesof 6 is shownin Fig. 1, which usesthe
meansand standarddeviationsgiven by Tramontanoand
Macchiato, quoted above.

Since databasesare inherently biased collections of
sequencege.g., coding sequencesre disproportionately
represented}t is usefulto constrainthe sequencet some
subsebf a sequenceatabasdor which we canestimate,
the means Cmnd i and the standard deviationcs;andonc.
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FIG. 1. Plotof P versusinformationvaluev, for various
valuesof 0. The curvescorrespondbottomto top,to 6 =
.1,.2,.3,.5,.7,.8,and.9. Also, M =225 =150 =
.15,ando__=.5.Thecurvefor 8="5is highlighted,astﬁis
E:férgseés)pondsto Fig. 1d of Tramontanoand Macchiato

For example, if the sequence(with unknown coding
properties)is known to be of mitochondrial origin, one
would calculate the estimatesonly for mitochondrial
sequences.To minimize the error caused by the
overlappinginformationvalue distributionsof codingand
noncodingsequencesthese parametersan be estimated
using ORFswhoselengthsare no shorterthanthat of the
unknown sequenceAlthough the interpretationof these
estimatesis complicatedby the nonrandomcharacterof
sequencedatabasesneglecting 8 entirely can lead to
seriouserrorsin the assignmenbf sequencedentity (see
Fig. 1).

The predictionsbasedon information value can be
comparedo the TESTCODEalgorithmof Fickett (1982).
TESTCODEprovidesa prediction of coding, noncoding,
or no opinion basedon the degreeof bias detectedin
nucleotideusagewithin codons. TESTCODEhas proven
reliable in classifying sequencedor two reasons.First,
TESTCODEtakesinto accounttherelative distributionsof
eightparameterbetweerncodingandnoncodingsequences
in an actual database.Second, Fickett has empirically
determinedthat TESTCODE'sacuracyis optimal when
usedwith ORFslonger than 200 bp. Since the decision
criteria usedby TESTCODE are fundamentallydifferent
from those used herein, our corrected form of the
information value function should provide a useful
complement to TESTCODE.

An important conclusion to be drawn from this
exercises that any methodfor predictionof the functional
nature of an unknown sequencewill be subject to
additionalerrorif it doesnot takeinto accountthe relative
proportions of the different types of sequencesn the
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population. For example,there are several methodsfor
identifying splice junctionsin DNA sequence¢Nakataet
al., 1985;lida, 1985; Staden,1984; Harr et al., 1983), but
in general these methods find more false positive
identificationsthan actual splice junctions, owing to the
fact that chancewill createmany sitesthat are similar to
true junctions.

Although the effort requiredto estimatethe necessary
populationparametergor our analysiscan be substantial,
we feel that the resultant increasedaccuracy of the
predictive test more than justifies such effort.
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