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Abstract

A family of r sets is called a ∆-system if any two sets have the same
intersection. Denote by F (n, r) the most number of subsets of an n-
element set which do not contain a ∆-system consisting of r sets. Con-
structive new lower bounds for F (n, r) are given which improve known
probabilistic results, and a new upper bound is given by employing an
argument due to Erdős and Szemerédi. Another construction is given
which shows that for certain n, F (n, 3) ≥ 1.551n−2. We also show
a relationship between the upper bound for F (n, 3) and the Erdős–
Rado conjecture on the largest uniform family of sets not containing a
∆-system.

1 Introduction

A family F of sets is called k-uniform if for every F ∈ F , |F | = k holds. A
family of sets is called a ∆-system if any two sets have the same intersection.
Define f(k, r) to be the least integer so that any k-uniform family of f(k, r)
sets contains a ∆-system consisting of r sets. Erdős and Rado [8] proved
that

(r − 1)k < f(k, r) < k!(r − 1)k (1)

and conjectured that for each r, there exists a constant Cr so that f(k, r) <
Ck

r . Erdős (see [6]) has offered 1000 dollars for the proof or disproof of this
∗This work was partially supported by the Network DIMANET/PECO of the European

Union (ERBCIPDCT 940623) and the grant RPY300 of International Science Foundation
and Russian Government.
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for r = 3. Several authors (Abbott, Hanson, and Sauer [3], Abbott and
Hanson [4], Spencer [14], and Kostochka [12, 13]) have slightly improved the
bounds in (1) but a proof or disproof of the conjecture is nowhere in sight.
Currently, the best known upper bound [13] is

f(k, r) < Ck!

(
(log log log k)2

α log log k

)k

, (2)

where α is any positive constant and k is large enough. As far as the lower
bounds are concerned, limited progress seems to have been made since 1974
(see [1], [2], [4]). Infinite versions have also been studied in, for example, [7]
and [9].

What appeals to us here is the similar problem for families having a fixed
ground set. Define F (n, r) to be the largest integer so that there exists a
family F of subsets of an n-element set which does not contain a ∆-system
of r sets. In [10], Erdős and Szemerédi showed

F (n, 3) < 2n(1− 1
10
√

n
) (3)

and stated that the probabilistic method implies that for each r ≥ 3, there
exists a constant cr > 0, so that

F (n, r) > (1 + cr)n

where cr → 1 as r →∞. Let

βr = lim
n→∞

F (n, r)1/n.

Abbott and Hanson [5] observed that βr exists and that the probabilistic
method mentioned above gives βr ≥ 2(r + 2)−1/r. They also presented a
construction implying

βr ≥
(

2r − 2
r

)1/(2r−2)

∼ 2(1− log(2r)
4r

). (4)

The Erdős-Szemerédi proof [10] of (3) reveals relations between bounds
for f(k, r) and F (n, r). It shows that good upper bounds for f(k, r) yield
satisfactory upper bounds for F (n, r) and strong lower bounds (if found) for
F (n, r) might imply lower bounds for f(k, r). In Section 2, we repeat the
Erdős-Szemerédi argument, however giving a more general outcome (Theo-
rem 2.1) which yields the following two propositions.
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Proposition 1.1 For each r and sufficiently large n,

F (n, r) < 2n−
√

n log log n

log log log n .

The second consequence of Theorem 2.1 is the next proposition showing that
if the Erdős–Rado conjecture is true, then there exists an ε > 0 so that for
large n, F (n, 3) < (2− ε)n.

Proposition 1.2 If there exists a constant C so that f(k, 3) < Ck, then for
n sufficiently large,

F (n, 3) < 2n(1−0.65/C).

In particular, βr ≤ 2(1−1/2C).

A weak ∆-system is a family of sets where all pairs of sets have the same
intersection size. Frankl and Rödl [11] proved that an upper bound of the
form (2− ε)n holds for the size of any family of subsets of an n element set
not containing a weak ∆-system of 3 sets. This together with Proposition
1.2 motivates obtaining lower bounds on F (n, r) and βr. In Section 3 we
give a bound for general r, improving (4).

Theorem 1.3 For every r ≥ 3 and every n of the form n = 2prblog rc,

F (n, r) ≥ 2n(1− log log r
2r

−O(1/r)),

(and there are uniform families which witness this bound). In particular,

βr ≥ 2(1− log log r
2r

−O(1/r)).

In Section 4, we concentrate on r = 3 and derive the following.

Theorem 1.4 For every n of the form n = 14q,

F (n, 3) ≥ 1.53n.

Refining the argument, we also obtain

Theorem 1.5 For every n of the form n = 48q + 2,

F (n, 3) ≥ 1.551n−2.

In particular, β3 ≥ 1.551.

In our proofs, it will be convenient to use the shorthand r-free family of
sets to denote a family which contains no ∆-system consisting of r sets.
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2 Analyzing the Erdős-Szemerédi proof

Repeating the Erdős-Szemerédi argument, we show that it indeed proves
more than was originally claimed.

Theorem 2.1 ([10]) Let r be fixed. Suppose that for k > k0, α = α(k)
satisfies f(k, r) ≤ αk. For n sufficiently large, if k > n0.1 and

2kα < 1.31n, (5)

then
F (n, r) < 2n−k.

Proof of Theorem 2.1: Let A = {Ai | 1 ≤ i ≤ t} be the largest r-free
family of subsets of an n-element set S, and for each l = 1, . . . , n, Al be the
subfamily of A with members of cardinality l. Obviously, there is an l so
that s = |Al| ≥ t/n. For each Ai ∈ Al, consider all its subsets of size l − k.
The total number of such subsets is easily bounded from above by s

( l
k

)
. The

total number of subsets of S of size l − k is clearly
( n
l−k

)
, and so, some set

B of size l − k occurs in at least u members of Al, where

u ≥
s
( l
k

)( n
l−k

) =
s
(n+k

k

)(n+k
l

) > s

(
n + k

k

)
2−n−k.

Let Al,B = {Ai ∈ Al | Ai ⊃ B}. Then Al,B −B = {Ai \B | Ai ∈ Al,B} is a
k-uniform r-free family. Thus, u < f(k, r) and so,

t ≤ ns < n · f(k, r)2n+k

(
n + k

k

)−1

< n2 · 2n
(

2kα

ne

)k

.

By (5), the last expression does not exceed n2 · 2n(1.31
e )k < 2n−k. 2

This correlation between f(k, r) and F (n, r) enables easy proofs of Propo-
sitions 1.1 and 1.2.
Proof of Proposition 1.1: By (2), for large k,

f(k, r) <

(
k(log log log k)2

10 log log k

)k

.

Thus, for n sufficiently large and k =
√

n·log log n

log log log n , the conditions of Theorem
2.1 hold. Hence F (n, r) < 2n−k. 2
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Proof of Proposition 1.2: Let k, n be large, f(k, 3) < Ck, then for
k = d0.65n/Ce, (5) holds, and by Theorem 2.1, we get what was promised.
2

3 A lower bound for large r

Let V1, V2, . . . , Vp be pairwise disjoint finite sets and for each i = 1, . . . , p,

let Fi be a family of subsets on Vi. Define
p∏

i=1
Fi to be the family of subsets

A of
p⋃

i=1
Vi such that A ∩ Vi ∈ Fi holds for each i = 1, . . . , p. Clearly,

|
p∏

i=1

Fi| =
p∏

i=1

|Fi|. (6)

If all pairs (Vi,Fi) are copies of one pair (V,F), we shall denote
p∏

i=1
Fi by

Fp. A family of sets is said to be Sperner (or “has the Sperner property”)
if none of the sets contains another one.

The following lemma is a relative of Theorem 1 in [1].

Lemma 3.1 If F1 and F2 are Sperner r-free families on disjoint ground

sets V1 and V2 then
2∏

i=1
Fi is also a Sperner r-free family.

Proof of Lemma 3.1: Let A,B ∈
2∏

i=1
Fi. For some i ∈ {1, 2}, A ∩ Vi 6=

B ∩ Vi. Then by the Sperner property of Fi, both (A ∩ Vi) \ (B ∩ Vi) and

(B ∩ Vi) \ (A ∩ Vi) are non-empty. It follows that
2∏

i=1
Fi is Sperner.

Suppose now that A1, . . . , Ar ∈
2∏

i=1
Fi form a ∆-system of r sets. Let

i ∈ {1, 2} be such that not all the sets A′
j = Aj ∩ Vi coincide. Without loss

of generality, we assume that for K = A′
1 ∩ A′

2, K 6= A′
1. By the Sperner

property of F then K 6= A′
2. Since A1, . . . , Ar form a ∆-system, K ⊂ A′

j ,
for each j = 1, . . . , r and no element in Vi \K belongs to more than one of
the A′

j-s. It follows that all A′
j-s are distinct and form a ∆-system of r sets.

This is a contradiction. 2

We use the notation [n]k = {S ⊆ {1, . . . , n} : |S| = k}. The next lemma
is very similar to that in [5] (the consequence of which is mentioned in the
introduction).
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Lemma 3.2 For any k ≥ r + 2, the family [2r]k is r-free.

Proof of Lemma 3.2: Suppose that A1, . . . , Ar ∈ [2r]k form a ∆-system
of r sets. Let m be the size of their common intersection M . Then all the
sets Ai \M are disjoint and so counting the elements used in the ∆-system,
we have

m + r(k −m) ≥ m + r(r + 2−m) ≥ r(r + 2)− (r − 1)(r + 1) = 2r + 1,

which is impossible. 2

For t, r ≥ 1, let V1, . . . , Vt be pairwise disjoint sets of cardinality 2r and
W =

⋃t
i=1 Vi. Define F(r, t) to be the collection of all subsets A of W

satisfying

|A ∩ Vi| ∈ {r + 2, r + 2 + t, . . . , r + 2 + tb(r − 2)/tc} (7)

for each i = 1, . . . , t.

Lemma 3.3 For any r and t, the family F(r, t) is r-free and contains a uni-
form (and hence Sperner) subfamily F ′(r, t) of cardinality at least |F(r, t)|/r.

Proof of Lemma 3.3: Suppose that A1, . . . , Ar ∈ F(r, t) form a ∆-system
of r sets. For each i = 1, . . . , t and j = 1, . . . , r set Aj(i) = Aj ∩ Vi.

Let B(i) = A1(i) ∩ A2(i). Since A1, . . . , Ar form a ∆-system, B(i) ⊆
Aj(i) for each j, and each element of Vi \B(i) belongs to at most one of the
Aj-s. Like in the proof of Lemma 3.2, we observe that it is impossible to
have all Aj(i)-s distinct from the corresponding B(i), so let Al(i)(i) = B(i).
By (7), each Aj(i) is distinct from Al(i)(i) and has at least t elements in
Aj(i) \ Al(i)(i) which should coincide with Aj(i) \

⋃
l 6=j Al(i). Hence the

number of such sets is at most (2r − (r + 2))/t. Consequently, for at least
2 members of {A1, . . . , Ar}, their intersections with Vi are equal to B(i) for
each i. This is a contradiction.

Observe that the size of any member of F(r, t) belongs to the set {t(r +
2), t(r + 3), . . . t(r + r − 2)}. It follows that for some i, the size of {A ∈
F(r, t) : |A| = t(r + i)} is at least |F(r, t)|/r. 2

Proof of Theorem 1.3: Because of the O(1/r) in the statement of The-
orem 1.3, we may assume that r is large enough. Put t = blog2 rc, and let
n = p · 2rt.

Let F ′(r, t) be the family provided by Lemma 3.3. By Lemma 3.1, the
family (F ′(r, t))p does not contain any ∆-system of r sets. The number of
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subsets A of a Vi satisfying (7) is at least (1 − O(1/
√

r)) · 22r−1/t. Conse-
quently, for large r,

|F ′(r, t)| ≥ |F(r, t)|/r ≥ (22r−1(1−O(1/
√

r))/t)t/r ≥ 22tr−t

tt2r
≥ 22tr

tt2r2
.

Thus,

|(F ′(r, t))p| ≥

 1
2r2

(
22r

t

)t
 n

2rt

= 2n(1− log log r
2r

−O(1/r)) . 2

4 A lower bound for r = 3

4.1 Outline of the construction

To arrive at Theorem 1.5 we first present a Sperner 3-free family F comprised
of subsets of a 14-element “brick”. With F and Lemma 3.1 we then prove
Theorem 1.4. On another 14-element brick we construct another Sperner 3-
free family L. We then give another product lemma, and apply it to combine
F and L, yielding a family Q on a ground set of 26 elements. Applying the
product lemma again to two disjoint copies of Q produces a family R on
a ground set of 50 vertices. Finally, we take the product of R with itself,
producing R2 on 98 vertices, then by successively taking the product of the
result with R again, each time increase the existing ground set by 48 until
we reach n.

4.2 The family F on a 14 element brick

To begin the construction, let W = {w1, . . . , w5, y} and define four families
H0, . . . ,H3 of subsets of W as follows. Put H0 = {∅} and H1 = {A ⊂ W :
|A| = 5}. The family H2 will be the following family of triples of elements
of W :

H2 =
5⋃

i=1

{{y, wi, wi+1}, {wi, wi−2, wi+2}},

where the indices are taken modulo 5. Finally, let H3 = {W \A : A ∈ H2}.
The following known fact (see [2], [3]) can be verified directly.
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Lemma 4.1 The family H2 is intersecting, Sperner, and 3-free. Moreover,
H3 is isomorphic to H2. 2

The ground set X for our desired family F consists of two copies W1

and W2 of W and two additional elements x1 and x2 (in total, |X| = 14).
Subfamilies of F shall be described by quadruples of the type 〈i1, i2, j1, j2〉,
where i1 and i2 will take values from {0, 1, 2, 3} and j1, j2 from {0, 1}.
Now we are ready to indicate F on X. We define F =

⋃8
t=1Ft, where

Ft = 〈i1, i2, j1, j2〉 consists of exactly those subsets A of X with the following
property for q = 1, 2: A ∩Wq ∈ Hiq and A contains exactly js elements of
the set {xs}, s = 1, 2. Let

F1 = 〈1, 1, 0, 0〉,
F2 = 〈2, 2, 1, 1〉,
F3 = 〈1, 0, 1, 1〉,
F4 = 〈0, 1, 1, 1〉,
F5 = 〈1, 2, 1, 0〉,
F6 = 〈3, 1, 1, 0〉,
F7 = 〈1, 3, 0, 1〉,
F8 = 〈2, 1, 0, 1〉.

It will be of some help that for t = 3, 5, 7, Ft and Ft+1 are symmetric
with respect to W1 and W2, and for t = 5, 6, Ft and Ft+2 are symmetric
with respect to x1 and x2.

Lemma 4.2 The family F defined above is Sperner, 3-free, and satisfies
|F| = 388.

Proof of Lemma 4.2: By definition, |F1| = |H1|2 = 36, |F2| = |H2|2 =
100, |F3| = |F4| = 6, |F5| = . . . = |F8| = 60. Thus, |F| = 388.

To derive the Sperner property, observe first that each member of Ft has
cardinality kt, where k1 = 10, k2 = 8, k3 = k4 = 7, k5 = . . . = k8 = 9. Notice
that only the members of F1 do not meet {x1, x2} and hence none of them
contains any other member of F . The members of F5∪ . . .∪F8 have smaller
intersection size with {x1, x2} than those of F2 ∪ F3 ∪ F4. The members of
F2 have smaller intersection size with W1 than those of F3 and have smaller
intersection size with W2 than those of F4. Thus, F is Sperner.
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Suppose that some members A,B and C of F form a ∆-system. We
have to consider several cases. For 0 ≤ p, q ≤ 3 we denote by case [p, q] the
case when x1 belongs to exactly p many of A,B and C, and x2 belongs to
q of them. Since A,B and C form a ∆-system, the value 2 is forbidden for
p and q. We also take into account the symmetry between p and q. In each
case we shall find an element which belongs to exactly two of A,B and C,
yielding a contradiction.

Case [3, 3]. Then A,B and C belong to F2∪F3∪F4. By Lemmas 4.1 and
3.1, not all three of A, B, and C belong to F2. We may assume A ∈ F3. If
another one, say B also belongs to F3, then no other member of F2∪F3∪F4

covers their intersection (of size 4) which is a contradiction. If both B and
C belong to F2 then their common element in W2 (which exists by Lemma
4.1) is what we are after. The last possibility is that B ∈ F2 and C ∈ F4.
Then each element of W1 ∩ A ∩ B belongs to exactly two of the sets A,B
and C.

Case [3, 1]. Then two of the sets A,B and C belong to F5 ∪ F6. First
assume that A ∈ F5, B ∈ F5∪F6 and C ∈ F2∪F3∪F4. If B∩W1 6= C∩W1,
then the symmetric difference between B ∩W1 and C ∩W1 has size at least
two, and hence meets A∩W1. This gives an element which belongs to A and
moreover to exactly one of B and C. Secondly, suppose B ∩W1 = C ∩W1.
Then C ∈ F3 and B ∈ F5. In this case, A and B have a common element
in W2 which does not intersect C. Thirdly, let both A and B be in F6. In
order that C covers A∩B ∩W2, we need C ∈ F4. As in the second subcase
a common element of A and B in W2 does not intersect C.

Case [3, 0]. We may assume that A and B are in F5, and C ∈ F5 ∪ F6.
We can also assume that |A∩B∩W1| ≥ |A∩B∩W2|. If not all of A,B and
C coincide on W1, then the intersection |A∩B ∩W1| is not contained in C.
So, let A,B and C coincide on W1. Then their corresponding intersections
with W2 form a subfamily of H3, which contradicts Lemma 4.1.

Case [1, 1]. If two of A,B and C belong to F1, then the intersection
of these two has at least eight elements in common with W1 ∪ W2. But
any member of F2 ∪ F3 ∪ F4 has at most six elements in W1 ∪W2. So, we
may assume A ∈ F1, B ∈ F5 ∪ F6 and C ∈ F7 ∪ F8. Moreover, we can
assume B ∈ F5. If |A∩B ∩W1| = 4 then for any 3-tuple or 5-tuple C ∩W1

there is an element in W1 belonging to exactly two of A,B and C. Thus,
A∩W1 = B ∩W1 and necessarily A∩W1 = C ∩W1. It follows, C ∈ F7 and
furthermore B ∩W2 and C ∩W2 are distinct triangles, since B ∩W2 ∈ H2

and C ∩W2 ∈ H3. Then their symmetric difference has a common element
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with A ∩W2 which is a contradiction.
Case [1, 0]. We may assume that A and B are in F1 and C ∈ F5. Then

the triple C ∩W2 does not cover A ∩B ∩W2.
Case [0, 0]. A, B and C belong to F1 and by Lemma 3.2 do not form a

∆-system.
This concludes the proof of the fact that F is 3-free, and so the proof of

Lemma 4.2. 2

Proof of Theorem 1.4: Applying Lemma 3.1 with q sets instead of 2, the
above construction gives for each n of the form n = 14q a 3-free Sperner
family showing F (n, 3) ≥ (3881/14)n > 1.53n. 2

4.3 The family L on 14 elements

We now define another Sperner 3-free family L of subsets of the 14-element
set W1 ∪ W2 ∪ {x1, x2}. (Note: we will later take L to be on a ground set
disjoint from that of F .) As in Section 4.2, we shall use for L the same
meaning for quadruples of the type 〈i1, i2, j1, j2〉, where i1 and i2 will take
values from {0, 1, 2, 3} and j1, j2 from {0, 1}.

We put L =
⋃8

t=1 Lt, which are defined by the following quadruples:

L1 = 〈1, 2, 0, 0〉,
L2 = 〈2, 1, 0, 0〉,
L3 = 〈2, 3, 1, 0〉,
L4 = 〈3, 2, 0, 1〉,
L5 = 〈1, 0, 1, 0〉,
L6 = 〈0, 1, 0, 1〉,
L7 = 〈3, 0, 1, 1〉,
L8 = 〈0, 3, 1, 1〉.

Lemma 4.3 The family L is Sperner, 3-free, and satisfies |L| = 352.

Proof of Lemma 4.3: We prove the lemma along the lines of the proof of
Lemma 4.2.

One can check that |L1| = |L2| = 60, |L3| = |L4| = 100, |L5| = |L6| = 6,
and |L7| = |L8| = 10, giving 352 in all.

To derive the Sperner property, observe first that each member of Lt has
cardinality kt, where k1 = k2 = 8, k3 = k4 = 7, k5 = k6 = 6, k7 = k8 = 5.
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Notice that only the members of L1 and L2 do not meet {x1, x2} and hence
none of them contains any other member of L. The members of L3∪ . . .∪L6

have smaller intersection size with {x1, x2} than those of L7 ∪ L8. The
members of L3 and L4 have smaller intersection size with W1 than those of
L5 and have smaller intersection size with W2 than those of L6. Thus, L is
Sperner.

Suppose that some members A,B and C of L form a ∆-system. As
above, for 0 ≤ p, q ≤ 3 we denote by case [p, q] the case when x1 belongs
to exactly p many of A,B and C, and x2 belongs to q of them. We also
take into account the symmetry between p and q. In each case we shall
find an element which belongs to exactly two of A,B and C, yielding a
contradiction.

Case [3, 3]. Then A,B and C belong to L7 ∪ L8. We may assume
A,B ∈ L7. If C also belongs to L7, then the sets A ∩ W1, B ∩ W1 and
C ∩W1 form a ∆-system, a contradiction to Lemma 4.1. Let C ∈ L8. Then
the elements of W1 ∩A ∩B do not belong to C.

Case [3, 1]. We may assume A ∈ L7. If both B and C belong to L3, then
the set W2∩B∩C is non-empty and disjoint from A. Let B ∈ L5. If C also
belongs to L5, then |W1 ∩C ∩B| = 4 and hence some element of this set is
not in A. Finally, if C ∈ L3 then the symmetric difference between B ∩W1

and C ∩W1 has size at least two, and hence meets A ∩W1.
Case [3, 0]. Assume first that A and B are in L3. Since the set W2∩B∩A

is non-empty, C also should be in L3. But by Lemma 3.1, L3 is Sperner
and 3-free. Thus, we may assume that A and B are in L5. Then no other
member of L3 ∪ L5 covers W1 ∩A ∩B.

Case [1, 1]. Assume first that A is in L7 ∪ L8, for definiteness, in L7.
Then both B and C are in L1 ∪ L2, and hence the set W2 ∩ B ∩ C is non-
empty and disjoint from A. Thus exactly one of A, B and C belongs to
L1 ∪ L2. We may assume that A ∈ L1, B ∈ L3 ∪ L5, C ∈ L4 ∪ L6. Note
that in any case, the symmetric difference between B ∩W1 and C ∩W1 has
size at least two, and hence meets A ∩W1.

Case [1, 0]. We may assume that both B and C are in L1∪L2. If A ∈ L5

then the set W2 ∩B ∩C is non-empty and disjoint from A. Let A ∈ L3. If,
say, B ∈ L2, then the symmetric difference between A∩W2 and C ∩W2 has
size at least two, and hence meets B ∩W2. If, finally, both B and C are in
L1, then the set B ∩C ∩W1 has size at least four, and hence is not covered
by A ∩W1.

Case [0, 0]. We may assume that A and B are in L1. If C ∈ L2, then the
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triple C ∩W1 does not cover A ∩ B ∩W1, and so C ∈ L1. But by Lemma
3.1, L1 is Sperner and 3-free. 2

4.4 Another product lemma

The following lemma is a relative of Theorem 2 in [1].

Lemma 4.4 . Let A and B be Sperner 3-free families on disjoint ground
sets A and B, respectively. For a ∈ A and b ∈ B, set Aa = {C ∈ A : a ∈ C},
Bb = {D ∈ B : b ∈ D}, Aa = A \ Aa, and Bb = B \ Bb. Let G1 =
{(C \{a})∪D : C ∈ Aa, D ∈ Bb}andG2 = {C ∪ (D \{b}) : C ∈ Aa, D ∈ Bb}.
Then for G = G(A, a,B, b) = G1 ∪ G2, the following hold:

(i) G1 ∩ G2 = ∅;
(ii) G is Sperner;
(iii) G is a 3-free family on the ground set (A ∪B) \ {a, b}.

Proof: Let Mi ∈ Gi, i = 1, 2, Mi ∩ A = Ci, Mi ∩ B = Di. Assume
that M1 ⊃ M2. Then C1 ⊃ C2, which is impossible because, by definition,
C1 ∪ {a} and C2 are members of the Sperner family G1, implying (i). Since
G1 and G2 are Sperner, this implies (ii).

Now assume that some distinct members M1,M2 and M3 of G (where
Mi∩A = Ci, Mi∩B = Di) form a ∆-system. Due to the symmetry between
G1 and G2, it is enough to consider the following cases.

CASE 1. All M1,M2 and M3 are members of G1. Then D1, D2 and D3

should form a ∆-system, too (maybe with repetition of members). Since G2

is Sperner and 3-free, D1 = D2 = D3 is necessary. Analogously, C1, C2 and
C3 (and hence also C1 ∪ {a}, C2 ∪ {a} and C3 ∪ {a}) form a ∆-system, as
well. Again, we get C1 = C2 = C3. Thus, M1 = M2 = M3, a contradiction.

CASE 2. M1,M2 ∈ G1, M3 ∈ G2. As in Case 1, D1, D2 and D3 should
form a ∆-system, too (maybe with repetition of members). Then D1, D2

and D3∪{b} are members of G2 and form a ∆-system, as well, but b belongs
only to D3 ∪ {b}. This is impossible for the Sperner and 3-free G2. 2

4.5 The families Q and R

We first construct from F and L a new family Q on 26 vertices. Let a ∈ W1

and b ∈ W2 be some elements of our 14-element set X. It is routine to verify
that, in terms of Lemma 4.4,

|Fb ∩ Fa| = 150, |Fb ∩ Fa| = |Fb ∩ Fa| = 95, |Fb ∩ Fa| = 48, (8)
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and

|Lx1∩Lx2 | = 20, |Lx1∩Lx2 | = 106, |Lx1∩Lx2 | = 106, |Lx1∩Lx2 | = 120. (9)

Let F and L have disjoint 14-element ground sets X(1) and X(2), re-
spectively, where now for each i = 1, 2, W1(i), W2(i), x1(i), x2(i), a(i), and
b(i) denote the corresponding copies of W1, W2, x1, x2, a, and b in X(i).
We define

Q = G(F , b(1),L, x1(2)).

By Lemma 4.4, Q is Sperner and 3-free. In anticipation of defining
another family R, we make some preliminary calculations. By (8) and (9),

|Q| = 245 · 226 + 143 · 126 = 73388;
|Qa(1)| = 150 · 226 + 95 · 126 = 45870;

|Qa(1)| = 73388− 45870 = 27518;

|Qx2(2)| = 245 · 120 + 143 · 106 = 44558;
|Qx2(2)| = 73388− 44558 = 28830.

Moreover,

|Qa(1) ∪Qx2(2)| = 150 · 106 + 95 · 20 = 17800;

|Qa(1) ∪Qx2(2)| = 95 · 106 + 48 · 20 = 11030;

|Qa(1) ∪Qx2(2)| = 150 · 120 + 95 · 106 = 28070;

|Qa(1) ∪Qx2(2)| = 95 · 120 + 48 · 106 = 16488.

We now define the family R on a ground set of 50 vertices. Let Q(1)
and Q(2) be two copies of Q on disjoint ground sets. We define

R = G(Q(1), a(1),Q(2), x2(2)).

By Lemma 4.4, R is Sperner and 3-free.
Let w be the copy of a(1) on the ground set of Q(1) and x be the copy

of x2(2) on the ground set of Q(2). By the above calculations,

|Rw| = 28070 · 45870 + 17800 · 27518 = 1 777 391 300,

|Rw| = 16488 · 45870 + 11030 · 27518 = 1 059 828 100,

|Rx| = 17800 · 44558 + 11030 · 28830 = 1 111 127 300,

|Rx| = 28070 · 44558 + 16488 · 28830 = 1 726 092 100,
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and so
|R| = 1111 127 300 + 1 726 092 100 = 2 837 219 400.

We remark that, as in the proof of Theorem 1.4, the construction of R gives
for each n of the form n = 50q a 3-free Sperner family showing F (n, 3) ≥
(2 837 219 400n/50) > 1.545n, however, we can do somewhat better.

4.6 The proof of Theorem 1.5

Proof of Theorem 1.5: For j = 1, 2, . . ., we construct a Sperner and 3-free
family Rj of cardinality at least 1.55148j with the ground set Dj , |Dj | =
48j + 2. We put R1 = R and by above calculations, observe that |R1| =
2 837 219 400 > 1.55148.

Suppose that Rj−1 has been constructed on the ground set Dj−1. Let z
be any element of Dj−1, and fix a copy of R on a ground set disjoint from
Dj−1. Using Lemma 4.4, we will take a certain product of Rj−1 with the
new copy of R, depending on certain vertices.
CASE 1. If |Rj−1

z | ≥ 0.5|Rj−1| then put Rj = G(Rj−1, z,R, x). By con-
struction and the induction assumption, |Dj | = |Dj−1|+ 48 = 48j + 2 and

|Rj | = 1 726 092 100 · |Rj−1
z |+ 1 111 127 300 · |Rj−1

z |
≥ |Rj−1|(0.5 · 1 726 092 100 + 0.5 · 1 111 127 300)
≥ 1.55148(j−1) · 0.5 · 2 837 219 400 > 1.55148j .

CASE 2. If |Rj−1
z | < 0.5|Rj−1| then put Rj = G(Rj−1, z,R, w). Similar to

Case 1, |Dj | = 48j + 2 and

|Rj | = 1 059 828 100 · |Rj−1
z |+ 1 777 391 300 · |Rj−1

z |
≥ |Rj−1|(0.5 · 1 059 828 100 + 0.5 · 1 777 391 300)
≥ 1.55148(j−1) · 0.5 · 2 837 219 400 > 1.55148j . 2
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