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Emory University, Atlanta GA 30322

Abstract

A collection H of integers is called an affine d-cube if there exist
d+ 1 positive integers x0, x1, . . . , xd so that

H =

{
x0 +

∑

i∈I
xi : I ⊆ {1, 2, . . . , d}

}
.

In 1969, Szemerédi found a density result for affine cubes, namely,
that for any positive integer d, there exists a constant c so that if
A ⊆ {1, 2, . . . , n} and |A| ≥ cn1− 1

2d , then A contains an affine d-cube.
Using extremal hypergraphs, we offer an entirely different proof of this
fact (though with worse constant) which also yields a slightly stronger
statement.

1 Introduction

For any positive integerm we use the notation [m] = [1,m] = {1, 2, . . . ,m}.
Definition 1.1 A collection H of integers is called a d-dimensional affine

cube, or more simply, an affine d-cube if there exist d + 1 positive integers
x0, x1, . . . , xd so that

H =

{
x0 +

∑

i∈I
xi : I ⊆ [d]

}
. (1)

If all sums in (1) are distinct, then |H| = 2d, and thus H is saturated, or
replete.
∗Partially supported by DFB-SFB 343, Diskrete Structuren in der Mathematik,
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For a set X we use the standard notations P(X) = {Y : Y ⊆ X} and
[X]s = {S ⊂ X : |S| = s}. It will often be convenient to use X = [n]. An
arithmetic progression of length k will be referred to as an APk.

If an affine d-cube H is generated by x0, x1, . . . , xd, then we write H =
H(x0, x1, . . . , xd). For example, H(1, 1, 1) = {1, 2, 3}, while a replete affine
2-cube is H(1, 3, 9) = {1, 4, 10, 13}. Note that H(x0, x1, . . . , xd) may differ
from, say, H(x1, x0, . . . , xd).

In 1892, Hilbert [11] proved a non-trivial Ramsey-type theorem for affine
cubes. The following is a finite version thereof, following from Hilbert’s
original result by compactness.

Theorem 1.2 (Hilbert [11]) For every r, d, there exists a least num-
ber h(d, r) so that for every coloring

χ : [h(d, r)]→ [r],

there exists an affine d-cube monochromatic under χ.

The original statement of the theorem asserted that if one colored the
positive integers with finitely many colors, then one color class contained
a (monochromatic) d-cube. Theorem 1.2 follows from van der Waerden’s
Theorem [17] since an APd+1 given by {a, a + k, a + 2k, . . . , a + dk} is the
affine d-cube H(a, k, k, . . . , k). See [1] for further references.

In 1969, Szemerédi [15] proved that if a set A of positive integers has
positive upper density, (i.e., lim

n→∞|A∩ [1, n]| > 0) then A contains an AP4. In
that same paper[15] (Lemma p(δ, l), p. 93), Szemerédi gave a density version
of Theorem 1.2; Szemerédi’s so-called “cube lemma” can also be found in
[8]. Explicit bounds which follow directly from Szemeré’di’s argument are
also mentioned in [6].

Theorem 1.3 (Szemerédi [15]) For each d, there exists a constant c
so that for sufficiently large n, if A ⊂ [n] and

|A| ≥ cn1− 1

2d , (2)

then A contains an affine d-cube.

Szemerédi’s 1975 paper [16] proving a density result for arbitrarily long
arithmetic progressions has occasionally been errantly attributed as the
source of the cube lemma. Since the 1975 paper is so complicated, such
claims were hard to verify. Perhaps as a result, typographical misprints
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such as the “2” in the exponent of (2) printed as “e” have survived—but
with positive effect. One such misprint led the present authors to find the
following following slight improvement, but with a more complicated proof:

Theorem 1.4 For each integer d ≥ 2 there exists an n0 so that for every
n ≥ n0, if A ⊂ [1, n] satisfies

|A| ≥ (1 + δ)2d−3/2n1−1/2d (3)

then A contains (1− o(1))n2/2d−1 replete affine d-cubes.

We make a few comments on some subtle differences between our density
result and Szemerédi’s. The results given in this paper guarantee not only
one d-cube as does Szemerèdi’s, but on the order of n2 of them. It is not
clear what the precise order of magnitude should be, since by a result in [4]
(Theorem 2, with k = 2d+1 and l = 2d+1− (d+ 1)), for a fixed ε ∈ (0, 1] one
can conclude that if A ⊂ [1, n] satisfies |A| ≥ εn, then A contains on the
order of nd+1 affine d-cubes, that is, a positive fraction of all such cubes.
We also observe that our results guarantee replete affine cubes.

With Theorem 1.3 in hand, we observe that the upper bound for h(d, r)
appearing in [1] is now immediately improved by applying the pigeonhole
principle. The details have been noted in [9] and [10].

2 The density result; Proof of Theorem 1.4

The basic idea used here for proving Theorem 1.4 is to first give an ex-
tremal result for a very special class of partite hypergraphs, then to interpret
hyperedges thereof as numbers.

2.1 Extremal results for d-partite hypergraphs

A d-uniform hypergraph is a pair G = (V, E) = (V (G), E(G)), with vertex
set V and hyperedge set E ⊂ [V ]d. Note that by this definition, each d-set
from V may occur only once as a hyperedge. For pairwise disjoint sets
X1, X2, . . . , Xd, let

G = (X1, X2, . . . , Xd, E(G))

denote a d-partite d-uniform hypergraph on vertex set V (G) = ∪di=1Xi and
edge set E(G) ⊆ [V (G)]d, where for each E ∈ E(G) and each i = 1, . . . , d,
|E ∩Xi| = 1 holds; the sets X1, . . . , Xd will be called partite sets.
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Let K(d)(n1, n2, . . . , nd) denote the complete d-partite d-uniform hyper-
graph on

∑d
i=1 ni vertices, partitioned into sets of sizes n1, n2 . . . , nd, and

having
∏d
i=1 ni edges, each edge containing exactly one vertex from each par-

tite set. [The “(d)” in the notation is not redundant; it depicts the number
of vertices per hyperedge.] The complete d-partite d-uniform hypergraph
with two vertices in each partite set will be denoted by K(d)(2, 2, . . . , 2).
For any d-uniform hypergraph H, the maximum number of d-hyperedges in
any H-free hypergraph on n vertices is denoted by ex(n,H).

In 1964 Erdős [2] (cf. equation (4.2) in [5]) showed that there exists a
universal constant c < 1 so that for each d and sufficiently large n,

ex(n,K(d)(2, 2, . . . , 2)) ≤ cnd− 1

2d−1

holds; for d > 2, at present there is still a wide gap between the lower and
upper bounds for ex(n,K(d)(2, 2, . . . , 2)) (see [9] for discussion).

Instead of considering the maximum number of of d-hyperedges in any
K(d)(2, 2, . . . , 2)-free hypergraph G, we will obtain a best possible (up to
constant a multiple) extremal result when such G’s are chosen only from
a very special class of d-uniform hypergraphs, namely those which are d-
partite and have a particular shape.

Definition 2.1 For positive integers d ≥ 2 and a, let G(d, a) be the class
of d-partite d-uniform hypergraphs G = (X1, X2, . . . , Xd, E(G)) which satisfy
|X1| = a and for each i = 2, . . . , d, |Xi| = a2i−2

( hence |X2| = a as well).
Define p(1, a) =

(a
2

)
, and for d ≥ 2, define

p(d, a) =

(
a

2

)
d∏

i=2

(
a2i−2

2

)
,

the number of ways to pick two vertices from each partite set in a graph from
G(d, a).

Lemma 2.2 Let δ > 0 be a real number and a ≥ max{2, 1/(8δ2)}. For
each integer d ≥ 2 and any G ∈ G(d, a), if

|E(G)| ≥ (1 + δ)2d−3/2 · a(2d−1)/2

then G contains p(d − 1, a) = (1 − o(1))(a2d−1
/2d−1) (as a → ∞) copies of

K(d)(2, . . . , 2). Up to a multiplicative constant, this result is sharp, that is,
there exists a constant c so that for every d ≥ 2, and sufficiently large a there
exists a G ∈ G(d, a) with |E(G)| = ca(2d−1)/2 which is K(d)(2, . . . , 2)-free.
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It may be interesting to note that a conclusion similar to Lemma 2.2
follows from [7] (Lemma 5.6), however such is not quite suitable for our
purpose.
Proof of Lemma 2.2: Fix δ > 0 and let G = (X1, X2, E(G)) ∈ G(2, a) for
some fixed a ≥ max{2, 1/(8δ2)}. The proof is by induction on d.

Let d = 2, and so |X1| = |X2| = a. Assume that |E(G)| ≥ (1+ δ)
√

2a3/2.
For any x ∈ V (G) = X1 ∪ X2, deg(x) denotes the degree of x in G; for
i, j ∈ V (G), let deg(i, j) denote the pairwise degree of i and j, that is, the
number of common neighbors to i and j. The following counting argument
uses well known techniques (cf. [2]); similar counting will be used in the
inductive step. For Jensen’s inequality for convex functions see, for example,
[13]. The number of copies of K(2)(2, 2) ∼= C4 in G is

∑

{i,j}∈[X1]2

(
deg(i, j)

2

)
≥

(
a

2

)(∑

[X1]2

deg(i, j)/
(|X1|

2

)

2

)
(by Jensen’s inequality),

=

(
a

2

)( 1

(a2)
∑

x∈X2

(deg(x)
2

)

2

)
(counting from X2)

≥
(
a

2

)( a

(a2)
(|E(G)|/|X2|

2

)

2

)
(again by convexity),

=

(
a

2

)(
2

a−1

((1+δ)
√

2a
2

)

2

)

≥
(
a

2

)
,

where the last line follows because a ≥ max{2, 1/(8δ2)}.
Now assume that the theorem is true for some d ≥ 2 with δ > 0 and

sufficiently large a; we will show that the theorem holds for d + 1 and the
same δ.

Let G = (X1, . . . , Xd, Xd+1, E(G)) ∈ G(d+ 1, a) with

|E(G)| ≥ (1 + δ)2d−1/2 · a2d−1/2.

We need to show that G contains

p(d, a) =

(
a

2

)(
a

2

)(
a2

2

)
· · ·
(
a2d−2

2

)
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copies of K(d+1)(2, 2, . . . , 2). To simplify the calculations, let us introduce
some notation.

Let H be the family of 2d-sets formed by taking two vertices from each
of X1, . . . , Xd (not Xd+1); note that |H| = p(d, a). For each H ∈ H, let

d(H) = |{x ∈ Xd+1 : H ∪ {x} induces a copy of K(d+1)(2, 2 . . . , 2, 1)}|,

and for each x ∈ Xd+1, define

h(x) = |{H ∈ H : H ∪ {x} induces a copy of K(d+1)(2, 2 . . . , 2, 1)}|.

As with ordinary graphs, for x ∈ V (G), let deg(x) = |{E ∈ E(G) : x ∈ E}|.
Before we start the next sequence of inequalities, let us make an obser-

vation justifying the third line in the sequence. For any fixed x ∈ Xd+1

and a large enough, partitioning those edges containing x into sets just
large enough to apply the induction hypothesis, yielding p(d − 1, a) copies
of K(d)(2, . . . , 2) for each such set, shows

h(x) ≥
⌊

deg(x)
(1 + δ)2d−3/2a(2d−1)/2

⌋
· p(d− 1, a). (4)

The number of copies of K(d+1)(2, 2, . . . , 2) in G is (where now the third
line follows from equation (4))

∑

H∈H

(
d(H)

2

)
≥ |H|

( 1
|H|

∑

H∈H
d(H)

2

)
(by Jensen’s inequality)

= p(d, a)

( 1
p(d, a)

∑

x∈Xd+1

h(x)

2

)
(counting from Xd+1)

≥ p(d, a)

( 1
p(d, a)

∑

x∈Xd+1

⌊
deg(x)

(1 + δ)2d−3/2 · a2d−1−1/2

⌋
p(d− 1, a)

2

)

≥ p(d, a)

(p(d− 1, a)
p(d, a)

∑

x∈Xd+1

[
deg(x)

(1 + δ)2d−3/2 · a2d−1−1/2
− 1

]

2

)
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= p(d, a)

( 1
(a2d−2

2

)
[ ∑

x∈Xd+1
deg(x)

(1 + δ)2d−3/2 · a2d−1−1/2
− |Xd+1|

]

2

)

= p(d, a)

( 1
(a2d−2

2

)
[

|E(G)|
(1 + δ)2d−3/2 · a2d−1−1/2

− a2d−1

]

2

)

≥ p(d, a)

( 1
(a2d−2

2

)
[

(1 + δ)2d−1/2 · a2d−1/2

(1 + δ)2d−3/2 · a2d−1−1/2
− a2d−1

]

2

)

= p(d, a)

( 1
(a2d−2

2

)(2a2d−1 − a2d−1
)

2

)

≥ p(d, a).

We now show that the result is sharp by employing a well known con-
struction. Fix a finite projective plane of order q with points P and lines
L. Let a = q2 + q + 1 and form the equibipartite graph G′ = (P,L, E(G′))
defined by {p, L} ∈ E(G′) if and only if the point p is incident with line L.
In this case, G′ ∈ G(2, a) and is K2,2-free with |E(G′)| = (1+o(1))a3/2 edges.
(Only a slight modification is needed when a is not of the form q2 + q + 1.)

Create G ∈ G(d, a) by embedding G on the two smallest partite sets,
and extending edges of G′ to the remaining d− 2 partite sets in all possible
ways. The resulting d-partite d-uniform hypergraph is K(d)(2, 2, . . . , 2)-free
and contains ca(2d−1)/2 edges for a suitable constant c. 2

Using a = n/2, the base step of the proof of Lemma 2.2 immediately
gives the following, the first part of which is likely folklore.

Corollary 2.3 For any δ > 0, if G is an equibipartite graph on n ver-
tices and

|E(G)| ≥ 1 + δ

2
· n3/2

then G contains
(n/2

2

)
copies of C4

∼= K2,2.

The projective plane construction given in the proof of Lemma 2.2 gives
that (1 + δ)(n/2)3/2 edges may be required for the existence of a single K2,2
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in an equibipartite graph. It would be of interest to narrow this gap of
√

2
in the multiplicative constant.

If in the statement of Corollary 2.3 we do not insist that G be equibi-
partite, then, as is found by many constructions, (for example, see, [12],
Problem 10.36, [14], or [3] for more references) n3/2(1 − o(1))/2 are neces-
sary for the appearance of a K2,2.

2.2 Hypergraphs to integers

Now we demonstrate a bijection between edges in a complete hypergraph
G ∈ G(d, a) (recall Definition 2.1) and the elements of an initial interval of
positive integers.

Lemma 2.4 For integers a ≥ 2, d ≥ 2, and any integer x ∈ [1, a2d−1
],

there is a unique d-tuple of non-negative integers, α(x) = 〈αd, αd−1, . . . , α1〉,
where 0 ≤ α1 ≤ a− 1 and for j = 2, . . . , d, 0 ≤ αj ≤ a2j−2 − 1 so that

x = 1 + α1 +
d∑

i=2

αia
2i−2

.

Proof of Lemma 2.4: The number of such d-tuples is a·a·a2 ·a4 · · · a2d−2
=

a2d−1
. To see that the representation is unique, suppose that

1 + α1 +
d∑

i=2

αia
2i−2

= 1 + β1 +
d∑

i=2

βia
2i−2

.

Then

(βd − αd)a2d−2
= α1 − β1 +

d−1∑

i=2

(αi − βi)a2i−2

≤ |α1 − β1|+
d−1∑

i=2

|(αi − βi)|a2i−2

≤ a− 1 +
d−1∑

i=2

(a2i−2 − 1)a2i−2

= a2d−2 − 1,

and so βd = αd. Proceeding by downward induction shows that βj = αj for
each j = d− 1, . . . , 1. 2
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Lemma 2.5 For any integer d ≥ 2, real number δ > 0, and for a ≥
max{2, 1/(8δ2)}, if A ⊆ [1, a2d−1

] satisfies

|A| ≥ (1 + δ)2d−3/2 · a2d−1−1/2, (5)

then A contains p(d− 1, a) ∼ a2d/2d−1 replete affine d-cubes.

Proof of Lemma 2.5: Let a be large enough so that Lemma 2.2 holds and
let A satisfy (5). Construct

G = (X1, . . . , Xd, E(G)) ∈ G(d, a)

as follows. Let X1 = [0, a − 1], and for each j = 2, 3, . . . , d, let Xj be a
copy of [0, a2j−2 − 1] (where X1, X2, . . . , Xd are pairwise disjoint). To each
x ∈ A, assign the d-tuple α(x) as in Lemma 2.4, and let E(G) = {α(x) :
x ∈ A}. Since |E(G)| = |A| ≥ (1 + δ)2d−3/2a2d−1−1/2, by Lemma 2.2, G
contains p(d − 1, a) copies of K(d)(2, 2, . . . , 2). We claim that each copy of
K(d)(2, 2, . . . , 2) corresponds to a replete affine d-cube in A.

Fix a copy of K(d)(2, 2, . . . , 2) in G on vertices α1, β1, . . . , αd, βd, (where
for each i, αi ∈ Xi and βi ∈ Xi), and without loss, let αi < βi for each i.
Put

x0 = 1 + α1 +
d∑

i=2

αia
2i−2

,

x1 = β1 − α1 and for each j = 2, . . . , d, put xj = (βj − αj)a2j−2
. The set

(see Figure 1)
H = {x0 +

∑

j∈J
xj : J ⊆ [1, d]} ⊂ A

is an affine d-cube with, for example, largest element x0 +
d∑

i=1

xi = 1 + β1 +

d∑

i=2

βia
2i−2

. 2

2.3 Last part of proof of Theorem 1.4

We can now give an upper bound for the density of a set not containing
any affine d-cubes.
Proof of Theorem 1.4: Fix d ≥ 2, δ > 0 and let a ≥ max{2, 1/(8δ2)} be
large enough so that Lemma 2.2 holds. Let

a2d−1 ≤ n < (a+ 1)2d−1
.
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Figure 1: Hyperedges as numbers

Then
n1−1/2d = (1 + o(1))a2d−1−1/2

(as n → ∞). Now Lemma 2.5 applies yielding p(d − 1, a) ∼ a2d/2d−1 ∼
n2/2d−1 replete affine d-cubes. For large n, the (1 + o(1)) factor is absorbed
by the (1 + δ). 2

Though Lemma 2.2 gives a sharp result, the extremal graph given in the
proof thereof does not necessarily prevent any affine d-cube (for example,
examine the collection of edges formed by fixing a vertex in each partite
set but one—the integers thereby defined may certainly contain an affine
d-cube).

References

[1] T. C. Brown, F. R. K. Chung, P. Erdős, and R. L. Graham, Quan-
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