		THE UNIVERSITY OF MAN	NITOBA		
Octobe	er 24, 2006	Mid-Term EXAMIN	ATION		
PAPEI	R NO:	LOCATION: <u>207/306/31</u>	5 Buller	PAGE NO: <u>1 of 4</u>	
DEPA	RTMENT & COU	RSE NO: <u>CHEM / MBIO 277</u>	70	TIME: 1 HOUR	
EXAM	IINATION: Eleme	ents of Biochemistry I	EXA	MINER: <u>J. O'Neil</u>	
•	Enter your NAME The exam consists There is only 1 con	Instructions aswer Sheet using PENCIL ON and STUDENT NUMBER on a of multiple choice questions. arect answer for each question. L QUESTIONS CAREFULLY	the Answer Enter your		Sheet
1.	An organized network described by the way and a metaboo B) conden C) catabol D) anaboli E) canaboo	lism sation sm sm	nolecules a	nd release free energy is	s best
2.	Which statement a	bout the hydrophobic effect is	NOT corre	ct?	
	A) It is a n	najor driving force in the folding	ng of protei	ns.	

B) An organized water cage forms around non-polar hydrocarbons. C) It is explained primarily in terms of hydrocarbon enthalpy.

E) It is a major driving force in the formation of detergent micelles.

D) H is enthalpy, the heat energy at constant temperature, pressure, and volume.

A plasma pH of 6.8 doesn't seem too far away from a normal pH of 7.4, but at pH 6.8 the

A buffer solution is prepared by mixing 100 mL of 0.6 M sodium acetate and 200 mL of 0.2 M acetic acid. What is the pH of the buffer solution prepared? (pK_a for acetic acid =

H⁺ concentration is ____ times greater than at pH 7.4, and results in severe acidosis.

D) It is explained primarily in terms of water entropy.

3.

4.

A definition of pH is:

A) 0.1 B) 0.6 C) 4 D) 10.0 E) 20

A) 4.94 B) 4.76 C) 4.58 D) 5.23 E) 4.28

4.76

A) The power of H. B) $pH = -\ln_e[H^+].$ C) $pK_A = -\log_{10}[K_A]$

E) $pH = -\log_{10}[H^+]$

6.	Titration of asparagine by a strong base, for example NaOH, reveals two pK 's. Th	e
	titration reaction occurring at pK_2 ($pK_2 = 8.8$) is:	

```
A) -NH_2 + OH^- \rightarrow -NH^- + H_2O

B) -COOH + -NH_2 \rightarrow -COO^- + -NH_2^+

C) -COO^- + -NH_2^+ \rightarrow -COOH + -NH_2

D) -NH_3^+ + OH^- \rightarrow -NH_2 + H_2O

E) -COOH + OH^- \rightarrow -COO^- + H_2O
```

- 7. What is the pH of a serine solution in which the α -NH₃⁺ group (pKa 9.2) is one-third dissociated?
 - A) 8.7
 - B) 8.9
 - C) 9.0
 - D) 9.5
 - E) The problem cannot be solved without knowing the pK_a value of the carboxyl group.
- 8. 75 mL of 0.2 M NaOH were added to 100 mL of 0.1M aspartate solution, pH=pI. What is the new pH? pK_a values for aspartate are 1.88, 3.65 (R-group) and 9.60.
 - A) 1.40
 - B) 4.13
 - C) 6.62
 - D) 2.76
 - E) 9.60
- 9. The amino acid that contains a sulfur atom in its side chain and can form disulphide bonds is:
 - A) cysteine
 - B) methionine
 - C) serine
 - D) histidine
 - E) proline
- 10. The amino acid with a side-chain pK_a near neutrality and which therefore plays an important role as proton donor and acceptor in many enzyme-catalyzed reactions is:
 - A) cysteine
 - B) methionine
 - C) serine
 - D) histidine
 - E) proline
- 11. Which of the peptides would absorb light at 280 nm?
 - A) ala-lys-his
 - B) ala-ala-trp
 - C) ser-gly-asn
 - D) val-pro-leu
 - E) ser-val-ile
- 12. Reaction of the peptide, ala-met-lys-ser, with phenylisothiocyanate (PITC) at pH 8.0 followed by mild acidification (first cycle of Edman method) would release:
 - A) The labeled peptide ala-met-lys-ser-PTH.
 - B) PTH-ala, PTH-ser, PTH-lys and PTH-met.
 - C) PTH-ser and the peptide ala-met-lys.
 - D) PTH-ala and the peptide met-lys-ser.
 - E) The amino acid ser and the peptide ala-met-lys.

- 13. In an aqueous solution, protein conformation is determined by two major factors. One is the formation of the maximum number of hydrogen bonds. The other is:
 - A) Maximization of ionic interactions.
 - B) Minimization of entropy by the formation of a water solvent shell around the protein.
 - C) Formation of the maximum number of hydrophilic interactions.
 - D) Placement of polar amino acid residues around the exterior of the protein.
 - E) Placement of hydrophobic amino acid residues within the interior of the protein.
- 14. All of the following are considered "weak" interactions in proteins, except:
 - A) ionic bonds
 - B) peptide bonds
 - C) hydrophobic interactions
 - D) hydrogen bonds
 - E) van der Waals forces
- 15. Which of the following correctly depicts intrachain H-bonding in the alpha helix?
 - A) >C=O |||| O=C<
 - B) >N-H |||| H-R-
 - C) >N-H |||| H-N<
 - D) >C=O |||| H-C-
 - E) >C=O |||| H-N<
- 16. In the beta pleated-sheet, the R-groups of the amino acids ____?
 - A) Cause only anti-parallel sheets to form.
 - B) Lie in the plane of the sheet.
 - C) Generate H-bonds to stabilize the sheet.
 - D) Are found above and below the plane of the sheet.
 - E) Stack within the interior of the helix.
- 17. By adding SDS (sodium dodecyl sulfate) during the electrophoresis of proteins, it is possible to:
 - A) Determine a protein's isoelectric point.
 - B) Determine an enzyme's specific activity.
 - C) Determine the amino acid composition of the protein.
 - D) Preserve a protein's native structure and biological activity.
 - E) Separate proteins exclusively on the basis of molecular weight.
- 18. Which of the following is *least* likely to result in protein denaturation?
 - A) Changing the salt concentration.
 - B) Altering net charge by changing *pH*.
 - C) Disruption of weak interactions by boiling.
 - D) Exposure to detergents.
 - E) Mixing with organic solvents such as acetone.
- 19. The protein fibroin is composed of:
 - A) β-pleated sheet
 - B) triple helix
 - C) helix-turn-helix motif
 - D) coiled coils
 - E) double helix

- 20. Which of the following is a correct statement about K_m for an enzyme-catalyzed reaction showing a hyperbolic V_0 versus [S] curve?
 - A) The rate of reaction is equal to K_m multiplied by V_{max} .
 - B) K_m for the substrate is decreased in the presence of a competitive inhibitor.
 - C) The enzyme's active site is saturated with substrate when $[S] = K_m$.
 - D) The larger the K_m the more strongly the substrate binds to the enzyme.
 - E) If two different substrates can bind to the same active site, the substrate with the smaller K_m will bind more strongly.
- For the following irreversible reaction, the relationship between activation energy and the 21. rate constant of the reaction can be found by using which of the following equations.

$$A \rightarrow P$$

A)
$$k = \frac{k_B \cdot T}{h} \cdot e^{(-\Delta G^{\dagger}/R \cdot T)}$$

B) $\Delta G^o = -RT \cdot \ln_e(K_{eq})$

B)
$$\Delta G^o = -RT \cdot \ln_e(K_{eq})$$

C)
$$K_m = \frac{k_{-1} + k_2}{k_1}$$

C)
$$K_m = \frac{k_{-1} + k_2}{k_1}$$

D) $V = \frac{d[P]}{dt} = -\frac{d[S]}{dt}$

E)
$$V_0 = \frac{V_{\text{max}}[S]}{[S] + K_m}$$

- 22. Enzymes are biological catalysts that enhance the rate of a reaction by:
 - A) Binding tightly to the substrate transition state.
 - B) Decreasing the amount of free energy released.
 - C) Releasing the product as quickly as possible.
 - D) Altering the reaction equilibrium.
 - E) Increasing the energy of the transition state.
- 23. Which statement correctly describes the flow of electrons during the hydrolysis of a peptide bond by chymotrypsin?
 - A) Electrons flow from the catalytic triad into the amide nitrogen of the substrate.
 - The enzyme behaves as both an acid- and base-catalyst.
 - C) Electrons do not flow during enzyme catalyzed reactions.
 - D) Electrons flow out of the substrate and into the enzyme, and then back again.
 - The enzyme behaves as a base-catalyst only.
- 24. For an enzyme which follows simple Michaelis-Menten kinetics, what is the V_{max} if $V_0 = 15$ micromol/s when $[S] = K_m$.
 - A) 1.5 s

 - B) 15 s C) 30 s
 - D) 150 s
 - E) 15 min
- An enzyme has a K_m for its substrate of $1x10^{-6}$ M. In one experiment, the initial velocity of the reaction catalyzed by the enzyme was measured at a substrate concentration of $1x10^{-3}$ M and was found to be $3.5x10^{-5}$ moles per litre per second. What would the rate of reaction have been if the 25. substrate concentration had been 1x10⁻⁶ M?
 - A) 3.5x10⁻⁵ moles per litre per second
 - B) 35×10^{-5} moles per litre per second
 - C) 1.75x10⁻⁵ moles per litre per second
 - D) 1x10⁻⁶ moles per litre per second E) 1x10⁻³ moles per litre per second