

Photosynthetic **autotrophs** use the energy of sunlight to convert low- G CO₂ and H₂O into energy-rich complex sugar molecules.

$$
6CO_2 + 6H_2O \rightarrow (CH_2O)_6 + 6O_2
$$

This reaction has a large positive Δ*H* and a large negative Δ*S*.

The products have more enthalpy and are more ordered than the reactants.

Heterotrophs extract the chemical potential energy stored in sugars and other organic compounds and release $CO₂$ and $H₂O$.

$$
(\text{CH}_2\text{O})_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O}
$$

This reaction has a large negative Δ*H* and a large positive Δ*S*. The products have lost energy and are less ordered.

The *G* is released slowly in many steps using several metabolic pathways.

For any (bio)chemical reaction recall that $\Delta G = -RT \ln(K_{eq})$

where $\Delta G = G_P - G_S$

j

 $R =$ Gas Constant = 8.31 J / mol \cdot K. $T =$ Temp in K.

Under "*standard*" conditions: $\Delta G^{\circ} = -RT \ln(K_{eq})$

^o refers to 25^o C, 55 M H₂O, [reactant] = 1M

Biochemists prefer pH 7 to pH 0 where $[H^+] = 1M$ where $'$ refers to pH = 7. If $K'_{eq} = 19$ at 25^oC then, $-RT \ln(K'_{eq}) =$ $-(8.315 \text{ J/mol K})(298 \text{ K})(\ln 19) = -7,296 \text{ J/mol} = -7.3 \text{ kJ/mol}$ If reactants and products are present at 1M we can predict the direction of the reaction: K'_{eq} | $\Delta G'$ ^o | Direction > 1 negative Forward ≤ 1 positive Reverse $= 1$ 0 – $\Delta G^{\prime o} = -RT \ln(K_{eq}^{\prime})$

For a chemical reaction **at** equilibrium, the rates of the forward and reverse reactions are equal and no net change is occurring but no work can be done and Δ*G = 0.*

For this reaction, $K'_{eq} = \frac{[\text{Glc-6-P}]}{2} = 19$ $\Delta G'^{o} = -7.3 \text{ kJ/mol}$ $[Glc-1-P]$ When $[Glc-6-P] = [Glc-1-P] = 1 M$, the reaction will spontaneously convert Glc-1-P into Glc-6-P until equilibrium is established. $Glc-1-P$ \longrightarrow $Glc-6-P$ phosphoglucomutase

 $Glc-1-P$ \longrightarrow $Glc-6-P$

Notes:

1. Both Δ*G* and Δ*G'o* are *theoretical* maxima. Some G is always lost as heat.

2. Even if $\Delta G^{\prime o}$ is positive, the reaction can go forward if ΔG is negative. *i.e.* if the second term is negative and bigger than $\overline{\Delta G}^{\prime o}$.

3. Δ*G's* of **sequential** reactions are additive because Δ*G* is pathindependent. For example, 'o

The **synthesis** of ATP is a highly endergonic reaction and the **hydrolysis** of ATP is a highly exergonic reaction.

$$
ATP + H_2O \implies ADP + P_i
$$

$$
\Delta G^{\prime o} = -30 \text{ kJ} / \text{mole}
$$

How does ATP store **chemical potential energy** or why does hydrolysis release this energy? There are 4 parts to the answer:

1. Relief of charge repulsion.

One molecule with 4 negative charges is converted into 2 molecules with 2 negative charges each.

2. There are more resonance forms of $ADP + P_i$ than of ATP, so there is an **entropy increase** due to hydrolysis.

3. At the usual pH of cells, ADP ionizes and Le-Chatelier's Principle pulls the reaction forward.

4. Solvation of $ADP + P_i$ > the solvation of ATP which lowers the *G* of the products relative to the reactants.

Notes:

1. In cells, $Mg ATP²$ and $Mg ADP⁻$ are present. Hydrolysis of Mg ATP²⁻ has a different ΔG^{0} than ATP⁴⁻.

2. In cells, $[ATP] \sim 2.25$ mM; $[ADP] \sim 0.25$ mM; $[P_i] \sim 1.65$ mM

These concentrations are far from standard. So "*actual*" Δ*G* = -50 to -65 kJ / mole.

Other compounds have large Δ*G* of hydrolysis for reasons similar to ATP:

9

Other nucleoside triphosphates are energetically equivalent to ATP and are also used by cells. *e.g*. GTP

These are usually made by the following reactions catalysed by *nucleoside diphosphate kinases*:

 $ATP + NDP$ \longrightarrow ADP + NTP $\Delta G'{}^O = 0$

The following reactions release about the same amount of G as ATP hydrolysis and also can be used as energy "*currency*":

 $ADP + H_2O \rightarrow AMP + P_i$ $ATP + H_2O \rightarrow AMP + PP_i$

 $\Delta G'^o \sim -33$ kJ/mole

 $\alpha \sim -33$ kJ/mole $\Delta G'^0 \sim -33$ kJ/mole

The C is oxidized and the O is reduced.

In O_2 , bonding e^{-1} are shared equally by the 2 O.

In CO_2 and H_2O the electronegative O pulls e^{-1} away from C and H.

In CO₂, the C's have lost a share of the e^{-1} they had in glucose.

In living cells, this oxidation is a multi-step process involving **glycolysis**, **tricarboxylic acid cycle**, and mitochondrial **respiration**.

At various points, e^{-1} are transferred to electron carriers, and then to O_2 .

 For biochemists, the test cells are always kept at pH 7 and reported as: *E***'o**

A Table of *E***'o** values, where the half reactions are written as reductions, can be used to predict the directions of Redox reactions.

Another way to do this is to reverse the sign of the *E***'o** value for the reaction that is written as an oxidation, and then add the *E***'o** values. NADH \longrightarrow NAD⁺ + 2e⁻ + H⁺ $\boldsymbol{\mathcal{E}}^{\prime 0}$ = +0.32 Acetaldehyde + $2H^+ + 2e^ \longrightarrow$ Ethanol $\mathcal{E}^0 = -0.197$ j Acetaldehyde + H^+ + NADH \longrightarrow Ethanol + NAD⁺ $\Delta \mathbf{g}^{\mathbf{0}}$ = + 0.32 V + (- 0.197 V) = + 0.123 V

