

Photosynthetic <u>autotrophs</u> use the energy of sunlight to convert low- $G \operatorname{CO}_2$ and $\operatorname{H}_2\operatorname{O}$ into energy-rich complex sugar molecules.

$$6CO_2 + 6H_2O \rightarrow (CH_2O)_6 + 6O_2$$

This reaction has a large positive ΔH and a large negative ΔS .

The products have more enthalpy and are more ordered than the reactants.

<u>Heterotrophs</u> extract the chemical potential energy stored in sugars and other organic compounds and release CO_2 and H_2O .

$$(CH_2O)_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

This reaction has a large negative ΔH and a large positive ΔS . The products have lost energy and are less ordered.

The *G* is released slowly in many steps using several metabolic pathways.

For any (bio)chemical reaction recall that $\Delta G = -RT \ln(K_{ea})$

where $\Delta G = G_P - G_S$

 $R = \text{Gas Constant} = 8.31 \text{ J} / \text{mol} \cdot \text{K}.$ T = Temp in K.

Under "standard" conditions: $\Delta G^o = -RT \ln(K_{eq})$

^o refers to 25° C, 55 M H₂O, [reactant] = 1M

Biochemists prefer pH 7 to pH 0 where $[H^+] = 1M$ $\Delta G^{'o} = -RT \ln(K_{eq}^{'})$ where ' refers to pH = 7. If $K'_{eq} = 19$ at 25°C then, $-RT \ln(K'_{eq}) =$ $-(8.315 \text{ J/mol K})(298 \text{ K})(\ln 19) = -7,296 \text{ J/mol} = -7.3 \text{ kJ/mol}$ If reactants and products are present at 1M we can predict the direction of the reaction: $K'_{eq} = \Delta G'^{o}$ > 1 negative Direction negative Forward positive < 1 Reverse 0 = 1 _

For a chemical reaction **at** equilibrium, the rates of the forward and reverse reactions are equal and no net change is occurring but no work can be done and $\Delta G = 0$.

For this reaction, Glc-1-P \frown Glc-6-P $K'_{eq} = \frac{[Glc-6-P]}{[Glc-1-P]} = 19$ $\Delta G'^o = -7.3 \text{ kJ/mol}$ When [Glc-6-P] = [Glc-1-P] = 1 M, the reaction will spontaneously convert Glc-1-P into Glc-6-P until equilibrium is established. $Glc-1-P \longrightarrow Glc-6-P$

Notes:

1. Both ΔG and $\Delta G'^o$ are *theoretical* maxima. Some G is always lost as heat.

2. Even if $\Delta G'^o$ is positive, the reaction can go forward if ΔG is negative. *i.e.* if the second term is negative and bigger than $\Delta G'^o$.

3. ΔG 's of <u>sequential</u> reactions are additive because ΔG is pathindependent. For example,

Glc-1-P	+ H ₂ O		Glc	+ P _i	ΔG 0 -21.06 kJ
Glc	+ P _i		Glc-6-P	+ H ₂ O	+13.76 kJ
Glc-1-P		-	Glc-6-P		-7.3 kJ

The **synthesis** of ATP is a highly endergonic reaction and the **hydrolysis** of ATP is a highly exergonic reaction.

$$ATP + H_2O \implies ADP + P_i$$

$$\Delta G'^{o} = -30 \text{ kJ} / \text{mole}$$

How does ATP store **chemical potential energy** or why does hydrolysis release this energy? There are 4 parts to the answer:

1. Relief of charge repulsion.

One molecule with 4 negative charges is converted into 2 molecules with 2 negative charges each.

Notes:

1. In cells, Mg ATP²⁻ and Mg ADP⁻ are present. Hydrolysis of Mg ATP²⁻ has a different $\Delta G'^{o}$ than ATP⁴⁻.

2. In cells, $[ATP] \sim 2.25 \text{ mM}$; $[ADP] \sim 0.25 \text{ mM}$; $[P_i] \sim 1.65 \text{ mM}$

These concentrations are far from standard. So "*actual*" $\Delta G = -50$ to -65 kJ / mole.

Other compounds have large ΔG of hydrolysis for reasons similar to ATP:

Other nucleoside triphosphates are energetically equivalent to ATP and are also used by cells. e.g. GTP

These are usually made by the following reactions catalysed by nucleoside diphosphate kinases:

ATP + NDP \implies ADP + NTP $\Delta G'^{O} = 0$

The following reactions release about the same amount of G as ATP hydrolysis and also can be used as energy "currency":

 $ADP + H_2O \rightarrow AMP + P_i$ $ATP + H_2O \rightarrow AMP + PP_i$

$$\Delta G'^{o} \sim -33 \text{ kJ/mole}$$

 $\Delta G'^{0} \sim -33 \text{ kJ/mole}$

The C is oxidized and the O is reduced.

In O_2 , bonding e^{-1} are shared equally by the 2 O.

In CO₂ and H₂O the electronegative O pulls e^{-1} away from C and H.

In CO₂, the C's have lost a share of the e^{-1} they had in glucose.

In living cells, this oxidation is a multi-step process involving <u>glycolysis</u>, <u>tricarboxylic acid cycle</u>, and mitochondrial <u>respiration</u>.

At various points, e^{-1} are transferred to electron carriers, and then to O_2 .

For biochemists, the test cells are always kept at pH 7 and reported as: $\boldsymbol{\varepsilon}^{0}$

A Table of \mathcal{E}^{0} values, where the half reactions are written as reductions, can be used to predict the directions of Redox reactions.

The more positive is the $\boldsymbol{\mathcal{E}}^{'0}$	TABLE 10.4 Standard reduction potentials of some important biological half-reactions		
The more positive is the Z	Reduction half-reaction		
(bottom of the Table) the stronger	$\begin{array}{l} Acetyl \operatorname{CoA} + \operatorname{CO}_2 + H^{\oplus} + 2e^{\ominus} \rightarrow Pyruvate + \operatorname{CoA} \\ Ferredoxin (spinach), Fe^{\bigoplus}_{e} + e^{\ominus} \rightarrow Fe^{\bigoplus}_{e} \end{array}$	-0.48 -0.43	
is the oxidizing agent. <i>i.e.</i> The	$\begin{array}{l} 2 \ H^{\oplus} + 2 e^{\oplus} \rightarrow H_2 \ (at \ pH \ 7.0) \\ \\ \alpha \cdot \text{Ketoglutarate} \ + \text{CO}_2 + 2 \ H^{\oplus} + 2 e^{\oplus} \rightarrow \text{Isocitrate} \\ \\ \text{Lipoyl dehydrogenase} \ (\text{FAD}) + 2 \ H^{\oplus} + 2 e^{\oplus} \rightarrow \text{Lipoyl dehydrogenase} \ (\text{FADH}_2) \end{array}$	-0.42 -0.38 -0.34	
reactions go as written in the Table.	$\begin{split} NADP^{\oplus} &+ 2 H^{\oplus} + 2e^{\oplus} \rightarrow NADPH + H^{\oplus} \\ NAD^{\oplus} &+ 2 H^{\oplus} + 2e^{\oplus} \rightarrow NADH + H^{\oplus} \\ Lipoic acid &+ 2 H^{\oplus} + 2e^{\oplus} \rightarrow Dihydrolipoic acid \\ Glutathione (oxidized) &+ 2 H^{\oplus} + 2e^{\oplus} \rightarrow 2 Glutathione (reduced) \end{split}$	-0.32 -0.32 -0.29 -0.23	
In combining pairs of half	FAD + 2 H [⊕] + 2e [⊖] → FADH ₂ FMN + 2 H [⊕] + 2e [⊖] → FMNH ₂ Acetaldehvde + 2 H [⊕] + 2e [⊖] → Ethanol	-0.22 -0.22 -0.20	
reactions the more positive $\boldsymbol{\mathcal{E}}^{0}$	Pyruvate + 2 H [©] + 2e ^O \rightarrow Lactate Oxaloacetate + 2 H [©] + 2e ^O \rightarrow Malate Cytochrome b ₂ (microsonal), F ^O + e ^O \rightarrow F ^O		
reactions are written as reductions	Function is 2 (introducing), to Function $e + 2 H^{\oplus} + 2e^{\oplus} \rightarrow \text{Succinate}$ Ubiquinone (Q) $+ 2 H^{\oplus} + 2e^{\oplus} \rightarrow \text{OH}_2$ Cytochrome //mitchondrial), $F_{\Theta}^{\oplus} + e^{\oplus} \rightarrow F_{\Theta}^{\oplus}$	0.02 0.03 0.04	
(e on the left) and the more	Cytochrome b (mitochondrial), $F_{e}^{\otimes e} + e^{\odot} \rightarrow F_{e}^{\otimes}$ Cytochrome $c_{1}, F_{e}^{\otimes} + e^{\odot} \rightarrow F_{e}^{\otimes}$ Cytochrome $c_{i}, F_{e}^{\otimes} + e^{\odot} \rightarrow F_{e}^{\otimes}$	0.08 0.22 0.23	
negative \mathcal{E}^{0} are written as	Cytochrome <i>a</i> , $F_{e}^{(0)} + e^{\bigcirc} \rightarrow F_{e}^{(0)}$ Cytochrome <i>f</i> , $F_{e}^{(0)} + e^{\bigcirc} \rightarrow F_{e}^{(0)}$	0.29	
oxidations (e on the right).	$\begin{split} \text{Plastocyanin, } Cu^{2+} &+ e^{\bigcirc} \longrightarrow Cu^+ \\ \text{NO}_3^{\bigcirc} &+ 2 \ \text{H}^{\odot} + 2e^{\bigcirc} \longrightarrow \text{NO}_2^{\bigcirc} + \text{H}_2\text{O} \end{split}$	0.37 0.42	
	Photosystem I (P700) $F_{e}^{\bigoplus} + e^{\ominus} \rightarrow F_{e}^{\bigoplus}$ $^{1}_{A}O_{b} + 2 H^{\oplus} + 2e^{\ominus} \rightarrow H_{A}O$	0.43 0.77 0.82	
	$\frac{1}{2}2_2 + 2 H^{\odot} + 2e^{-} \rightarrow H_2O$ Photosystem II (P680)	0.82	
	Table 10-4 Principles of Biochemistry, 4/e © 2006 Pearson Prentice Hall, Inc.		

Another way to do this is to reverse the sign of the \mathcal{E}^{0} value for the reaction that is written as an oxidation, and then add the \mathcal{E}^{0} values. NADH \longrightarrow NAD⁺ + 2e⁻ + H⁺ \mathcal{E}^{0} = +0.32 Acetaldehyde + 2H⁺ + 2e⁻ \longrightarrow Ethanol \mathcal{E}^{0} = -0.197 Acetaldehyde + H⁺ + NADH \longrightarrow Ethanol + NAD⁺ $\Delta \mathcal{E}^{0}$ = + 0.32 V + (-0.197 V) = + 0.123 V

