Inhibitor Discovery Targeting the Intermediate Structure of β-Amyloid Peptide on the Conformational Transition Pathway: Implications in the Aggregation Mechanism of β-Amyloid Peptide†

Dongxiang Liu,*‡ Yechun Xu,*‡ Yu Feng,*‡ Hong Liu,*‡ Xu Shen,*‡ Kaixian Chen,*‡ Jianpeng Ma,H,L* and Hualiang Jiang*§§

Center for Drug Design and Discovery, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, Texas 77030, and Department of Bioengineering, Rice University, Houston, Texas 77005

Received May 14, 2006; Revised Manuscript Received July 5, 2006

ABSTRACT: Aβ peptides cleaved from the amyloid precursor protein are the main components of senile plaques in Alzheimer’s disease. Aβ peptides adopt a conformation mixture of random coil, β-sheet, and α-helix in solution, which makes it difficult to design inhibitors based on the 3D structures of Aβ peptides. By targeting the C-terminal β-sheet region of an Aβ intermediate structure extracted from molecular dynamics simulations of Aβ conformational transition, a new inhibitor that abolishes Aβ fibrillation was discovered using virtual screening in conjunction with thioflavin T fluorescence assay and atomic force microscopy determination. Circular dichroism spectroscopy demonstrated that the binding of the inhibitor increased the β-sheet content of Aβ peptides either by stabilizing the C-terminal β-sheet conformation or by inducing the intermolecular β-sheet formation. It was proposed that the inhibitor prevented fibrillation by blocking interstrand hydrogen bond formation of the pleated β-sheet structure commonly found in amyloid fibrils. The study not only provided a strategy for inhibitor design based on the flexible structures of amyloid peptides but also revealed some clues to understanding the molecular events involved in Aβ aggregation.

Alzheimer’s disease (AD1) is a progressive neurodegenerative disease that is characterized by extracellular amyloid plaques and intraneuronal fibrillary tangles in the brain (1–3). Aβ1–40 and Aβ1–42 are the main alloforms of amyloid β (Aβ) peptides found in amyloid plaques. Though the amount of secreted Aβ1–42 is only 10% of Aβ1–40, Aβ1–42 is the predominant component in AD plaques (4, 5) and displays an enhanced neurotoxicity relative to that of Aβ1–40 (6, 7). A number of mechanisms have been proposed to explain the neuron toxicity of Aβ peptides, including the formation of ion-channels on the cell membrane (8), the generation of free radicals (9–11), and the interaction of Aβ peptides with various receptors, such as apolipoprotein E (12–14) and mitochondrial hydroxyacyl-CoA dehydrogenase (15, 16). The cytotoxic mechanism of Aβ has not been fully understood. However, compelling evidence indicates that the soluble oligomers (amyloid-derived diffusible ligands, ADDLs) and fibrils of Aβ are the toxic identities that cause neuronal injury and death in AD (17). Therefore, chemicals to prevent the pathological oligomerization and fibrillation of Aβ have potential therapeutic applications in the treatment of AD (18).

The C-terminal 12–14 amino acids of Aβ may exist as a helix in the cell membrane; however, the cleavage of Aβ from amyloid precursor protein (APP) by peptide bond hydrolysis could disrupt the helical conformation. The N-terminus of Aβ is outside the cell membrane, and its structure remains unknown. Therefore, the conformational transition of Aβ from α-helix to β-sheet or from random coil to β-sheet may occur during fibril formation in vitro. Aβ may adopt multiple conformations in vitro, such as α-helix, β-sheet, or random coil, depending on buffer conditions, such as pH, ion strength, and solvent properties.
For example, Aβ exists as a conformation mixture of α-helix, β-sheet, and random coil in aqueous solution (19, 20). In fluorinated alcohols such as trifluoroethanol (TFE) or hexafluoro 2-propanol (HFIP), Aβ adopts an α-helical conformation (21–24). The pH and temperature also affect Aβ peptide conformation. The α-helical conformation of Aβ is favored at pH 1–4 and 7–10. The increase in temperature unfolds the helical conformation. On the contrary, the β-sheet conformation of Aβ is temperature insensitive and favored at pH 4–7 (25–27). X-ray diffraction analyses and NMR determinations revealed that the Aβ stack in the form of pleated β-sheet structures oriented perpendicular to the fibril axis (28–30). Conformational studies on Aβ fibrillogenesis by circular dichroism (CD) spectroscopy, quasielastic light scattering (QLS), and other kinetic methods suggested that the conformational transition of Aβ into β-sheet structure in fibrils goes through an α-helix-containing intermediate conformation (31–33). The structural complexity of Aβ makes it extraordinarily difficult to design new inhibitors based on the 3D structures of the peptides.

Thus far, several classes of chemical compounds have been reported to block the fibrillation of Aβ, such as antibiotics (34), benzofuran derivatives (35), sulfonated dyes (36, 37), styryl benzene (38), flavone (39), and peptidic β-sheet breakers (40). Cell culture experiments demonstrated that inhibitors could reduce the cytotoxicity of Aβ peptides. The administration of Aβ inhibitors also reduced the amount of amyloid deposition in mice with acute amyloidosis (41). Even though, very few Aβ inhibitors have entered into clinic trial phases (42, 43), the problems inherent with these inhibitors, such as low bioavailability, poor biostability, toxicity, and inability across the blood–brain barrier (BBB), have limited their therapeutic applications. For example, an experimental drug, clioquinol, found to dissolve amyloid plaques and possibly help relieve AD symptoms, is now in phase II clinical trials. However, this drug caused a tragic disease called subacute myelo-optico-neuropathy (SMON) in patients. It has been banned since 1970 in Japan (44, 45). Accordingly, the structural modification of inhibitors as well as the design of new inhibitors with alternative structural scaffolds is required to improve physiochemical properties.

Previously, we had studied the conformation transition of Aβ1–40 from an α-helix to a random coil by using long time molecular dynamics (MD) simulations (46). The result revealed that Aβ undergoes an α-helix/β-sheet intermediate structure during the conformational transition. The α-helix/β-sheet intermediate structure has a core domain constituted by the segment of residues 24–37, of which four residues Gly25, Gly29, Gly33, and Gly37 are essential to β-sheet formation and amyloid fibrillation. Chemical compounds that lock the structure of Aβ into the α-helix/β-sheet intermediate state could possibly inhibit Aβ fibrillation. Accordingly, virtual screening based on molecular docking was performed, targeting the Aβ intermediate structure. In stead of stabilizing the α-helix conformation of nonaggregative Aβ intermediate structures, we aimed to design inhibitors binding to the β-sheet region of the Aβ intermediate to interrupt the formation of the pleated β-sheet structure found in amyloid fibrils. The aggregation and fibrillation of Aβ in the presence of one found inhibitor, DC-AB1, was studied by thioflavin T (ThT) fluorescence assay, atomic force microscopy (AFM), and polyacrylamide gel electrophoresis analysis, all of which showed that the inhibitor may effectively inhibit Aβ to form fibrils. Meanwhile, CD spectroscopy revealed that the β-sheet component of Aβ increased in the presence of DC-AB1, suggesting that DC-AB1 bound to Aβ and stabilized its β-sheet conformation. Taken together, this study not only demonstrated that the β-sheet region of Aβ intermediate structures could be used as a binding site for inhibitor design but also provided new insights into the molecular events involved in the conformational transition of Aβ peptides in fibrillogenesis.

EXPERIMENTAL PROCEDURES

Virtual Screening A stable conformation of Aβ1–40 that contained an α-helix and a β-sheet local structures was extracted from the trajectory of a 50-ns MD simulation on Aβ1–40 (46). The peptide surface mainly constituted of C-terminal residues Phe19, Phe20, Val24, Gly25, Gly29, Ala30, Gly33, Leu34, Gly38, Val39, and Val40 and a few N-terminal residues Ala2, Glu3, Arg5, Tyr10 was taken as the binding site for inhibitor design. Spheres were generated by the AutoMS and sphgen programs encoded in DOCK4.0 (47, 48) (http://dock.compbio.ucsf.edu/) to describe the shape of the binding site. The hydrophobic and electrostatic properties of the binding site were calculated by the program Grid4. Molecules from the SPECS database (http://www.specs.net/) were docked into the binding site by using a parallelized DOCK4.0 on a PC cluster. Kollman-all-atom charges and Geisterger–Hückel charges were assigned from the list. The selected compounds were purchased from the SPECS company.

Preparation of Sample Solution. Aβ1–42 (Sigma-Aldrich, catalog no. A9810) was dissolved in dimethyl sulfoxide (DMSO) to make a 200 μM stock solution. Aβ1–40 (Sigma-Aldrich, catalog no. A4473) was dissolved in Millipore water to make a 1.5 mg/mL stock solution. Aβ1–42 and Aβ1–40 stock solutions were centrifuged at the speed of 12 000 rpm for 10 min. The above supernatant was used for experiments. Compounds purchased from SPECS were dissolved in DMSO at a concentration of 10 mM.

ThT Fluorescence Assay. A screening assay for compounds to inhibit Aβ fibrillation was performed by measuring ThT
fluorescence emission with a modified procedure described by Lee et al. (50). Each compound (in concentrations of 0.1–10.0 mM) (2 μL) and 2 μL of 200 μM Aβ1–42 were added into 76 μL of phosphate-buffered saline (PBS at pH 7.4) in a 96-well plate. After incubation for 1 h at room temperature, 80 μL of 5 μM ThT solution (in 50 mM glycine-NaOH at pH 8.5) was added to the reaction solution. Fluorescence emission was measured at 488 nm with an excitation wavelength of 430 nm on a multilevel HTS counter (TECAN, Genios Pro).

Inhibition of Aβ1–42 Fibril Growth. Aβ1–42 (2.5 μL) (200 μM) was mixed with different volumes (i.e., 0, 10, 20, 30, 40 μL) of 10 mM compound. PBS buffer was added to make the final volume 50 μL. Samples were incubated at 37 °C for 20 h followed by the addition of 100 μL of 7.5 μM ThT (in PBS at pH 7.4). Fluorescence emission was measured at 483 nm with an excitation wavelength of 430 nm on a Hitachi F-2500 fluorescence spectrophotometer (Hitachi High-Tech Corp., Japan).

Atomic Force Microscopy. The compound (2.5 μL) (10 mM) and 2.5 μL of 200 μM Aβ1–42 were added to 45 μL of PBS buffer (20% TFE at pH 7.4). As a control, 2.5 μL of 200 μM Aβ1–42 was added to 47.5 μL of PBS buffer (20% TFE at pH 7.4). Samples were incubated at 37 °C for 6 days, and a 3 μL sample solution was deposited on freshly cleaved mica and incubated for 5 min, then blown dry. The 7TESP tips used for the scan had a resonance frequency of 280–290 kHz. The scan rate varied from 1 to 3 Hz. Image data were acquired using the tapping mode on a Multimode Nano IIIa atomic force microscope (Veeco, Woodbury, NY).

Glutaraldehyde Cross-Linking. The sample was incubated with 42 mM glutaraldehyde (GTA) at room temperature for 20 min, followed by the addition of equal volumes of the polycrylamide gel electrophoresis sample buffer to stop the reaction.

Gel Electrophoresis. Aβ1–42 (3 μL) (200 μM) was incubated with or without 3 μL of 10 mM compound in a final volume of 20 μL in PBS buffer (20% TFE at pH 7.4) at 37 °C for 6 days. Then, 5 μL of the incubated Aβ1–42 samples and the unincubated 30 μM Aβ1–42 were cross-linked with glutaraldehyde. The uncross-linked Aβ1–42 samples were analyzed with 10% native gel. The cross-linked and uncross-linked Aβ1–42 samples were analyzed with 10% SDS–PAGE. Both gels were run in a Tris/Glycine system and developed by the silver-stain method.

CD Spectroscopy. The compound was dissolved in Milipore water to make a 54.7 μM solution. The samples prepared for the CD experiment were (1) 20 μM Aβ1–40 with or without equimolar concentration of compound and (2) 20 μM Aβ1–40 in 20% TFE with or without equimolar concentration of compound. CD spectra were recorded in a 0.1 cm path-length cuvette on a Jasco J-810 spectropolarimeter (JASCO Corporation, Japan). The data were the average of four times scans over a wavelength of 190–260 nm at room temperature. The background signal from water was subtracted. Deconvolution of CD spectra was performed with the software CDNN (51).

RESULTS

Candidate Compound Selection. By molecular dynamics simulation, we found that Aβ1–40 goes through α-helix/β-sheet intermediate structures during the α-helix to random coil conformational transition (46). The C-terminus of Aβ1–40 intermediates adopted a β-sheet conformation (Figure 1A). Virtual screening was performed targeting the C-terminal region. Using energy score as the preliminary method to evaluate the binding affinity of compounds with the target, 1000 compounds with an energy score of −32.91 to −57.58 kJ/mol were selected by the program DOCK4.0 from over 278 000 molecular identities in the SPECS database (version 2004). The binding affinity of selected compounds was re-evaluated with Cscore. Meanwhile, the interaction of compounds with Aβ1–40 was visually inspected using the software Sybyl6.8. Compounds with an unfavorable interaction with Aβ1–40 were excluded from the candidate list. Hit compounds in the final list had Cscore values of 4–5. As a result, 125 compounds were chosen for biological assay.

Identification of the Inhibitor DC-AB1. ThT exhibits a characteristic fluorescence spectral change upon binding to amyloid fibrils. The maximum emission wavelength was shifted from 445 to 482 nm (52). The more fibrils it binds, the stronger the fluorescence intensity will be. To perform high-throughput screening on candidate compounds for inhibitory activity against Aβ1 fibrillation, we measured the fluorescence emission of ThT at 488 nm with an incident light of 430 nm in Aβ1–42 incubated with 10 mM test
concentration of DC-AB1 needed to abolish half the amount of Aβ_{1-42} fibrils shown in Figure 2C also proved the concentration-dependent inhibition of DC-AB1.

Effect of DC-AB1 on the Ultrastructure of Aβ Oligomers and Fibris. It has been shown that Aβ_{1-42} can form fibrils in 20% TFE, even at nanomolar concentration (22). Thus, we incubated 10 μM Aβ_{1-42} in PBS buffer (20% TFE at pH 7.4) to study Aβ fibrillation by atomic force microscopy. After 6 days of incubation at 37 °C, Aβ_{1-42} aggregated into spheroidic species, where protofibrils were observed (3A). The long axis of the spheroids varies from 33 to 220 nm. The lateral dimension of the protofibrils ranges from 17 to 44 nm. The height of the oligomers and protofibrils in a scope of 1 × 1 μm² is in the range of 2–19 nm with the maximum distribution at 16 nm (Figure 3C). Small aggregates were also found emerging out of the Aβ_{1-42} sample, which are likely to grow into spheroids or merge into protofibrils.

In contrast, protofibrils were not observed in the sample of Aβ_{1-42} incubated with DC-AB1. However, sparsely distributed Aβ_{1-42} oligomers with a diameter of 4–15 nm were observed (Figure 3B). A statistical analysis in a scope of 3 × 3 μm² showed that the height of the oligomers ranges from 1.5 to 2.0 nm with the maximum distribution at 1.8 nm (Figure 3D). Comparing the morphology of the oligomers and protofibrils shown in Figure 3A and B, we can see that DC-AB1 dramatically suppressed the aggregation of Aβ_{1-42}, not only by reducing the size of formed oligomers but also by decreasing the number of nuclei for aggregation, which are critical for fibril formation (53). The inhibition of the formation of Aβ protofibrils is consistent with the inhibitory activity of DC-AB1 determined by the ThT fluorescence assay (Figure 2).

Effect of DC-AB1 on Aβ Oligomerization. Glutaraldehyde is a homobifunctional amine cross-linker frequently used for the detection of protein oligomerization (54, 55). We cross-linked Aβ_{1-42} oligomers with glutaraldehyde so that Aβ_{1-42} oligomerization in the presence and absence of DC-AB1 could be studied by polyacrylamide gel electrophoresis analysis. First, we analyzed the uncross-linked Aβ_{1-42} samples on a native gel (Figure 4A). The unincubated Aβ_{1-42} displayed a dark band corresponding to the monomer, whereas the incubated Aβ_{1-42} did not show any band on the gel. Aβ_{1-42} incubated with DC-AB1 displayed a smearing band, indicating the existence of aggregation from monomer to higher ordered multimers. To determine the molecular weight of the oligomers, we analyzed the cross-linked and uncross-linked Aβ_{1-42} samples on SDS–PAGE (Figure 4B). Consistent with the native gel analysis result, the cross-linked Aβ_{1-42} samples on SDS–PAGE. The density of the monomer bands descended in the order of unincubated Aβ_{1-42}, Aβ_{1-42} incubated with DC-AB1, and Aβ_{1-42} incubated without DC-AB1. The Aβ_{1-42} samples cross-linked with glutaraldehyde only displayed monomer bands on SDS–PAGE.

Effect of DC-AB1 on the Conformation of Aβ. Aβ adopts a conformation mixture of α-helix, β-sheet, and random coil in aqueous solution. It undergoes a conformational transition to form intramolecular β-sheet structure in fibrils. However, the conformational transition pathway is still unclear. To
investigate how DC-AB1 would affect Aβ aggregation, we studied the conformational change of Aβ induced by the compound with CD spectroscopy (Figure 5). In 20% TFE, a low polar solvent that can stabilize the α-helix and disrupt the interstrand hydrogen bond of β-sheet, Aβ1-40 was converted into the α-helical conformation characterized by the negative bands near 208 nm, 220 nm, and the positive band near 193 nm. Interestingly, the addition of DC-AB1 to the Aβ1-40 aqueous solution with 20% TFE induced a significant conformational change. The typical negative
bands at 218 and 220 nm of the α-helix diminished and a negative band at 216 nm was observed, indicating the appearance of the β-sheet conformation.

According to the CD deconvolution result (Table 1), Aβ1-40 has a conformation mixture containing 5.8% α-helix, 37.0% β-sheet, 20.1% β-turn, and 35.7% random coil in aqueous solution. In 20% TFE, the content of helical conformation increased from 5.8% to 19.9%, whereas the β-sheet conformation decreased from 37.0% to 29.0%, demonstrating the helix stabilization effect of the TFE solvent. When DC-AB1 was added to the 20% TFE solution, the β-sheet component increased from 29.0% to 35.8%, and the helical component decreased from 19.9% to 12.5%. The variation of the content of β-turn and random coil conformation was relatively small, suggesting that some of the Aβ residues with α-helical conformation had reverted to the β-sheet conformation upon interaction with DC-AB1. However, the β-sheet content of Aβ1-40 after the addition of DC-AB1 is still less than that in aqueous solution because of the helix stabilization effect of the TFE solvent. Likewise, the presence of DC-AB1 in the aqueous solution of Aβ1-40 also increased the β-sheet content from 37.0% to 43.2% but did not change the helical component. The amount of β-turn and random coil conformations decreased from 20.1% to 18.4% and 35.7% to 33.1%, respectively, suggesting that some residues within the β-turn and/or random coil regions had been converted into the β-sheet conformation.

DISCUSSION

Rationale for the Strategy for Inhibitor Design. The solution structures of Aβ1-40 and Aβ1-42 have been determined in TFE (23), sodium dodecyl sulfate (SDS) micelles (26), or HFIP (21) by NMR techniques. Both peptides are folded into two helical domains connected by a flexible kink region. The lengths and positions of the helices are different among these structures, implying that Aβ structures are highly flexible and depend on the solvent properties. Therefore, the resolved NMR structures could not be used directly for the inhibitor design because the buffers used in the NMR experiments are different from the physiological conditions. Besides, Aβ peptides undergo a conformation transition in fibrillogenesis. It is even more difficult to determine the Aβ intermediate structures on the conformational transition pathway by experimental approaches. To explore the structural features of Aβ peptide, we studied the conformational transition of Aβ1-40 by using a series of long time molecular dynamics simulations and demonstrated that helix/β-sheet mixed conformations are possible intermediates in Aβ fibrillogenesis (46). The MD simulations indicated that there were α-helical and β-sheet regions on the intermediate structures, suggesting that either the α-helix and/or the β-sheet might be targeted for inhibitor design, even though the overall structures of Aβ are flexible.

Meanwhile, MD simulations also revealed that the structural segment of residues 24–40 may be the core domain for Aβ oligomerization and that four glycine residues, Gly-25, Gly-29, Gly-33 and Gly-37, are essential for the intermediate structures, suggesting that either the α-helix and/or the β-sheet might be targeted for inhibitor design, even though the overall structures of Aβ are flexible.

| Table 1: Deconvolution Results of Aβ1-40 CD Spectra |
|-----------------|-------------------|-------------------|
| | Aβ1-40 | Aβ1-40 (in 20% TFE) | Aβ1-40 (in 20% TFE) |
| | (Aβ1-40/DC-AB1) | (Aβ1-40/DC-AB1) |
| helix | 5.8 | 19.9 | 12.5 |
| β-sheet | 37.0 | 29.0 | 35.8 |
| β-turn | 20.1 | 19.5 | 19.0 |
| random coil | 35.7 | 31.2 | 33.6 |

* Aβ1-40 and DC-AB1 are in equimolar concentration. * The content of antiparallel β-sheet and parallel β-sheet conformations.
Inhibitor Targeting the Intermediate Structure of Aβ Peptides

Inhibition Mechanism of DC-AB1 to Aβ Fibrillation. According to the complex model of DC-AB1 with Aβ_{1-40} generated by docking simulation, DC-AB1 binds to the C-terminal region mainly through hydrophobic interactions (Figure 1B and C). There are three major hydrophobic sites at the Aβ_{1-40} peptide surface that hold the hydrophobic chemical groups of DC-AB1. Two phenyl rings of DC-AB1 interact with the hydrophobic sites constituted of the residues of Val24, Gly29, Val40, or the residues of Tyr10, Phe19, Phe20. The morpholine group of DC-AB1 interacts with the hydrophobic residues of Leu34 and Val40. These interactions are in agreement with previously published experimental results. It has been reported that a pentapeptide incorporating the sequence of Aβ_{16-20}, KLVFF, can prevent the assembly of Aβ into fibrils (57). Three mutants at Lys16, Leu17, and Phe20 with alanine markedly reduced Aβ fibrillation capability, suggesting that this sequence is critically involved in Aβ fibrillation. The hydrophobic interaction of the phenyl ring of DC-AB1 with Tyr10, Phe19, and Phe20 interfered with the crucial role of the sequence KLVFF in Aβ fibrillation. This may be one of the reasons that DC-AB1 showed Aβ fibrillation inhibiting activity. Meanwhile, a tetrapeptide, Pr-IIGLa, can self-aggregate into β-pleated sheet structure; however, another pentapeptide, RIIIGLa, derived from Aβ_{30-34}, which shares the sequence of IIGL with Pr-IIGLa, was able to inhibit Aβ fibrillation (58), suggesting the importance of the four residues IIGL in fibril formation. Therefore, the interaction of the morpholine group of DC-AB1 with residues Leu34 and Val40 may constitute another reason for the inhibitory activity of DC-AB1 against Aβ fibrillation. The consistency of the interaction between Aβ residues and DC-AB1 with experimental results support the rationality of our inhibitor design strategy.

The conformational change of Aβ induced by DC-AB1 was studied by CD spectroscopy. As shown in Figure 5 and Table 1, the binding of DC-AB1 increased the β-sheet content of Aβ peptide. There are two possible mechanisms that could explain the increasing amount of β-sheet conformation. The binding of DC-AB1 at the C-terminal region of the intermediate structure, as discussed above, might stabilize or promote β-sheet conformation of the monomeric peptide. However, we are not able to exclude another possibility that DC-AB1 could induce intermolecular β-sheet formation of Aβ through the hydrophobic interaction between the C-terminal regions, which might explain the formation of small spherical Aβ_{1-42} oligomers when incubated with DC-AB1 (Figure 3B).

On the basis of the docking simulation and experimental results, we propose a mechanism for DC-AB1 inhibition of Aβ fibrillation as depicted in Figure 6. DC-AB1 binds to the C-terminal region of Aβ intermediates on the conformational transition pathway mainly through hydrophobic interactions. The interaction between DC-AB1 and the C-terminal region shields the key residues at the C-terminus from interacting with the residues at the N-terminus, thereby interrupting Aβ to form antiparallel β-sheet structure that is a rate-determining step toward fibril formation (59). Consequently, it inhibited Aβ fibrillation.

Implications for the Mechanism of Aβ Fibrillation. Different from the contact-mode AFM in which the investigated objects are often pushed away by the stylus during scanning, the stylus in tapping-mode AFM touches the objects only at the end of its downward movement. The contact time and friction forces that might distort the morphology of the fibrils are reduced. Therefore, the tapping-mode AFM is more suitable for the study of the morphology of amyloid fibrils. After 6 days of incubation at 37 °C, Aβ_{1-42} at 10 μM in 20% TFE formed spheroid oligomers and branched protofibrils of 2–19 nm height with the maximum distribution at 16 nm. The protofibrils are about 17–44 nm in width, indicating that Aβ_{1-42} formed ribbon-like protofibrils. Amyloid fibrils are usually in the shape of straight cylinders of 6–10 nm diameter; however, the environment can affect the morphology of the fibrils into twisted ropes, tubes, or ribbons (60). The ribbon-like branched protofibrils of Aβ_{1-42} formed at 10 μM in 20% TFE are different from the typical cylindrical amyloid fibrils, suggesting that the fibrillation pathway of Aβ_{1-42} in 20% TFE is not identical to the one through which amyloid peptides formed into straight cylindrical fibrils. In the presence of DC-AB1, Aβ_{1-42} formed sparsely distributed oligomers with a height of 1.5–2.0 nm and a diameter of 4–15 nm, indicating a flat spherical shape of the oligomers. No protofibrils were observed. The morphological study of Aβ peptide by AFM clearly proved the inhibitory activity of the compound.

As to the fibrillogenesis of amyloid peptides, several models have been proposed, one of which is the critical oligomers model (61). According to this model, the first step in fibrillogenesis is the formation of critical oligomers, which is followed by coalescence of the critical oligomers into protofibrils. The inhibition mechanism of DC-AB1 and its effects on the ultrastructure (Figure 3), oligomerization (Figure 4), and conformation (Figure 5) of Aβ imply that the intermediate states with an α-helix/β-sheet mixture structure indeed exist during the conformational transition of Aβ. The residues at the β-sheet region of the C-terminus would interact with the N-terminal residues to form antiparallel β-sheet structures, which may aggregate into oligomers. Consistent with this hypothesis, numerous spheroid species of different sizes were emerging out of the Aβ_{1-42} incubation sample as shown in Figure 3A. The close up, framed out by the dashed rectangle in Figure 3A, shows that the oligomers lined up and coalesced with each other to merge into protofibrils. The assembly of the oligomers vividly showed the development from small spherical structures to protofibrils. Meanwhile, Aβ_{1-42} can also aggregate into 60-kDa globulomers through a pathway independent of the fibril formation (62). The C-terminus residues 24–42 of Aβ_{1-42} formed the core of the globulomer with the N-terminus hydrophilic residues 1–19 or 1–23 exposed at the outer surface, making the globulomer highly water soluble. The globulomers bind specifically to hippocampal neurons and have been detected in amyloid plaques in the brains of AD patients. Our AFM experiment demonstrated that in addition to the formation of protofibrils, Aβ_{1-42} also formed 33–220 nm spheroidic
oligomers that are much wider than amyloid fibrils (Figure 3A). It is possible that these big spheroidic oligomers could be globulomers or even higher ordered oligomers, which is worthy of further study because the coexistence of protofibrils and globulomers in Aβ fibrillogenesis may help us understand the formation of amyloid plaques in the brains of AD patients.

We further studied Aβ oligomerization in the presence or absence of DC-AB1 by using native gel and SDS–PAGE. The dissociation of Aβ oligomers and fibrils by SDS is well-known (63). However, it is also reported that SDS can induce the oligomerization of Aβ peptide (54). To stabilize Aβ oligomers and fibrils for SDS–PAGE analysis, we used glutaraldehyde to cross-link Aβ samples. Equal amounts of Aβ1-42 were loaded onto the lanes for all of the analyzed Aβ1-42 samples. On the native gel, Aβ1-42 from stock solution without incubation adopts a monomeric form (Figure 4A, lane 1). After 6 days of incubation, the monomer band disappeared, suggesting that Aβ1-42 had aggregated into higher ordered oligomers and fibrils (Figure 4A, lane 3). The fibrillation of Aβ1-42 had been inhibited by DC-AB1, demonstrated by the smearing band of the monomer to multimers on the native gel (Figure 4A, lane 2). On SDS–PAGE, a monomer band was observed on the lanes for three uncross-linked Aβ1-42 samples. The appearance of the monomer band for incubated Aβ1-42 sample on SDS–PAGE indicated that Aβ oligomers or fibrils had been disassembled into monomers by SDS (Figure 4B, lane 5). Also, Aβ1-42 multimers formed in the presence of DC-AB1 as shown on the native gel were disassembled into monomers by SDS (Figure 4B, lane 6). No oligomer bands were observed for all three uncross-linked Aβ1-42 samples. Considering that glutaraldehyde could stabilize the oligomers, we cross-linked Aβ1-42 samples with 42 mM GTA. However, Aβ oligomers were still not observed (Figure 4B, lanes 2, 3, and 4). There may be two reasons that explain the invisibility of oligomer bands on SDS–PAGE. The first reason is that a trace amount of oligomers formed in 30 μM Aβ1-42 might not be enough for detection by the silver-stain method. In addition to increasing the Aβ1-42 concentration, similar to what another group did using ≥100 μM Aβ for an oligomerization study by SDS–PAGE (27), more sensitive detection methods such as Western blot should perform better than the silver-stain method. Besides, even with cross-linking by glutaraldehyde, no oligomers bands appeared on SDS–PAGE, suggesting that a more efficient cross-linking method such as photoinduced cross-linking of unmodified proteins (PICUP) is required (64–67). Another reason for the invisibility of oligomers bands on SDS–PAGE is related to the dissociation of Aβ oligomers and/or fibrils by SDS. It should be noted that not all of the Aβ oligomeric forms and/or fibrils had been disassembled by SDS. An important conclusion could be drawn by comparing the density of the monomer bands of Aβ1-42 incubated without DC-AB1 and unincubated Aβ1-42 on SDS–PAGE. The loading amount of Aβ1-42 was the same for both lanes, the density of the monomer band from Aβ1-42 incubated without DC-AB1 (Figure 4B, lane 5) is lighter than the density of the monomer band from unincubated Aβ1-42 (Figure 4B, lane 7), indicating that incubated Aβ1-42 had formed into SDS-resistant oligomers and/or fibrils. This conclusion is in line with the previous report of SDS-stable Aβ oligomers extracted from Chinese hamster ovary (CHO) cells expressing β-amyloid protein precursor genes (68).

A variety of computational methods for library screening, de novo design, evaluation of drug-likeness, and protein–ligand binding affinity have been developed for drug design and discovery (69). Structure-based drug design techniques that require the 3D structure information of drug targets have been proven successful in bringing about 40 compounds into clinical trials and numerous others to drug approvals (70). When the structural information of drug targets is unavailable, some techniques such as pharmacophore map or QSAR model could be used for drug design. However, it is still a challenge to design small molecules that interrupt the protein–protein interaction, especially for unknown structural or nonstructural targets. To our knowledge, the small inhibitor of Aβ that we presented here is the first example of drug design targeting nonstructured peptides. As explained above, Aβ peptides adopt a conformation mixture of random coil, α-helix, and β-sheet in aqueous solution with the tendency to aggregation and fibrillation. Apparently, the conformation mixture of Aβ and the conformational change toward fibrils make it extraordinarily difficult to design new Aβ inhibitors because Aβ are basically nonstructural, and we do not know which intermediate conformation could be the effective target for the design. To circumvent this problem, we employed molecular dynamics simulations to study the conformational transition of Aβ and determined the C-terminal β-sheet region as the target for inhibitor design. By using virtual screening in conjunction with fluorescence bioassays and AFM experiments, we discovered a new small molecule that binds Aβ and inhibits fibrillation. The study not only demonstrated a drug design strategy targeting nonstructured proteins but also validated the fact that the C-terminal β-sheet region of Aβ intermediate structures could be used as a binding site for Aβ inhibitor design. The discovery of the inhibitor also indirectly proved the existence of the α-helix/β-sheet intermediates during Aβ fibrillation as predicted by our previous MD simulations, which may help understand the aggregation mechanism of Aβ in Alzheimer’s disease.

ACKNOWLEDGMENT

We thank Professor Irwin D. Kuntz for providing the source code for DOCK4.0.

SUPPORTING INFORMATION AVAILABLE

HPLC analysis and high-resolution mass spectral data of the identified compound. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES

Inhibitor Targeting the Intermediate Structure of Aβ Peptides

Biochemistry, Vol. 45, No. 36, 2006 10971

evidence that an initially deposited species is A beta 42(43). Neuron 13, 45–53.

