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ABSTRACT

During the last half century hundreds of papers published in statistical journals have doc-
umented general conditions where reliance on least squares regression and Pearson’s cor-
relation can result missing even strong associations between variables. Moreover, highly
misleading conclusions can be made, even when the sample size is large. There are, in
fact, several fundamental concerns related to non-normality, outliers, heteroscedasticity, and
curvature that can result in missing a strong association. Simultaneously, a vast array of
new methods have been derived for effectively dealing with these concerns. The paper (1)
reviews why least squares regression and classic inferential methods can fail, (2) provides an
overview of the many modern strategies for dealing with known problems, including some
recent advances, and (3) illustrates that modern robust methods can make a practical dif-
ference in our understanding of data. Included are some general recommendations regarding
how modern methods might be used.

Keywords: Robust Methods; Non-normality; Heteroscedasticity; Outliers; Curvature;
Well Elderly Study; Depression; Black Sheep Effect
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1 Introduction

As is evident, least squares regression and Pearson’s correlation play a central role in psycho-
logical research. From basic principles, classic inferential methods include three fundamental
assumptions. The first is that the dependent variable has a normal distribution. The sec-
ond is that there is homoscedasticity. That is the (conditional) variance of the dependent
variable does not depend on the values of the independent variable(s). For example, if Y
is some dependent variable of interest, such as the attitude of the participants, and X is
some independent variable, say age, then the variance of Y does not depend on the age of
the participants. So if the variance is 12 among children age 8, say, the variance is also
12 for children aged 7, 9, or any age of interest. If the variances change with age, there is
heteroscedasticity. The third common assumption is that with one independent variable, the
regression line is straight. More generally, with multiple independent variables, it is assumed
the regression surface is a plane.

An issue of fundamental importance is whether there are general conditions, or features
of data, that can result in poor power when testing the hypothesis of no association, or a
misleading summary of the data when these assumptions are violated. Based on hundreds of
papers published during the last half century, the answer is an unequivocal yes (e.g., Heritier
et al., 2009; Huber & Ronchetti, 2009; Rousseeuw & Leroy, 1987; Staudte & Sheather, 1990;
Wilcox, 2012, in press). From a purely descriptive point of view, least squares regression
and Pearson’s correlation can fail miserably, even when the sample size is large. A positive
feature of classic inferential methods is that when there is independence, they control the
probability of a Type I error reasonably well. If there is an association, again they might
perform well in terms of power, but there are general conditions for which this is not the
case. A practical implication is that when standard methods reject, it is reasonable to
conclude that there is an association with the understanding that the usual linear model
can poorly reflect the nature of the association. But when they fail to reject, concluding
there is no association is not remotely justified. Indeed, even when least squares regression
yields a highly non-significant result (a p-value substantially higher than .05), more modern
methods can have a much higher probability of detecting a truly strong association. Also,
as will be illustrated, there are important issues related to curvature that are not obvious
based on standard training.

The paper is organized as follows. Section 2 reviews why violations of assumptions
are a serious concern and it outlines the features of data that can result in poor power
and misleading conclusions. Included is a summary of why the better-known methods for
dealing with violations of assumptions perform poorly by modern standards. Section 3
briefly summarizes modern robust techniques for dealing with known problems. Virtually
all of the concerns summarized in section 2 can be addressed in a very effective manner via
modern techniques. Section 4 discusses curvature and section 5 describes software aimed at
implementing robust regression methods. Section 6 provides more illustrations that these
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newer methods can make a practical difference in our understanding of data. The paper
concludes with some general suggestions about how to proceed in light of modern insights.

2 Practical Concerns with Least Squares Regression,

Pearson’s Correlation, and Standard Hypothesis Test-

ing Techniques

This section discusses the practical consequences of violating each of the fundamental as-
sumptions previously mentioned. Violating any of these assumptions is now known to be
a serious concern. Not surprisingly, when two or more assumptions are violated simulta-
neously, as is often the case, problems are exacerbated. Features of data that can grossly
distort the nature of the association among the bulk of the participants are discussed as well.

2.1 Outliers and Heavy-Tailed Distributions

One basic concern is the effect of outlying values. There is already some awareness of this
issue among psychologists specializing in personality theory, where a trimmed mean has been
used to address the negative effects of outlying values (e.g., Borkenau, 2010; Krause et al.,
2011). The fact that outliers can seriously impact the least squares regression line, as well
as Pearson’s correlation, is now pointed out in some popular introductory texts (e.g., Moore
& McCabe, 1999), but it seems apparent that the problem is under appreciated, possibly
because most textbooks do not illustrate just how serious the problem can be. Moreover, the
choice of method for detecting outliers can be crucial. Also, care must be taken regarding how
to deal with outliers, when testing hypotheses, for reasons to be explained but which are not
typically covered in most introductory books. There are general conditions where simply
discarding outliers and testing hypotheses using the remaining data yields invalid results
regardless of how large the sample size might be. There are theoretically sound methods for
dealing with outliers (e.g., Heritier et al., 2009; Wilcox, 2012, in press), but they are not
obvious based on standard training. In some situations, outliers can be beneficial, as will be
explained. But they can lead to grossly inaccurate conclusions about the typical participants
as well.

First focus on the situation where there are outliers among the dependent variable, Y .
Figure 1 shows a scatterplot of data from an unpublished study dealing with predictors
of reading ability among children. (The data were supplied by L. Doi.) The independent
variable is taken to be a measure of phonological awareness and the dependent variable is
the accuracy of identifying lower case letters. Pearson’s correlation is −0.12 and the p-
value based on the usual Student’s t test is 0.29, suggesting there is little or no association.
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Figure 1: Outliers among the dependent variable, as shown here, can adversely affect power.
Modern hypothesis testing techniques have been derived to handle this issue in a technically
sound manner.

However, it is evident that the five largest accuracy scores are outliers and do not represent
the typical accuracy scores. It might seem that one could simply remove these outliers and
apply Student’s t to the remaining data. But when using Student’s t to test hypotheses
based on the least squares regression estimate of slope, this results in a technical error: an
incorrect estimate of the standard error is being used. This is because the standard error
associated of the slope estimator is derived assuming that the observations are independent.
The concern is that if outliers are removed that are valid values, the remaining values are
dependent. In practical terms, this can yield a highly inaccurate result regardless of how
large the sample size might be. This fact is well known in mathematical statistics, a simple
explanation is given in Wilcox (2012, section 4.7.1), but it is evident that this fact is not well
known otherwise. Moreover, and perhaps more importantly, using technically sound methods
for dealing with this problem can result in a substantially different conclusion.
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Figure 2: When both X and Y are normal, increasing ρ from .2 to .8 has a noticeable effect
on the bivariate distribution of X and Y.

Pearson’s correlation can miss a strong association even with a very large sample size.
The left panel of Figure 2 shows a bivariate normal distribution having correlation .8 and the
right panel shows a bivariate normal distribution having correlation .2. Now look at Figure
3. This bivariate distribution indicates a strong association from a graphical perspective,
it has an obvious similarity with the left panel of Figure 2, yet Pearson’s correlation is
only .2. The reason is that one of the marginal distributions has what is called a mixed
normal distribution, which is an example of a heavy-tailed distribution, roughly meaning
that outliers are more common compared to when data are normally distributed. This
illustrates the fact that a small change in the tails of one of the distributions can have a
large impact on Pearson’s correlation. Robust measures of association are designed to guard
against this event.

Numerous methods are now available for dealing with outliers, among the dependent
variable, in a technically sound manner (Wilcox, 2012, in press). A simple class of methods
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Figure 3: Two bivariate distributions can appear to be very similar yet have substantially
different correlations. Shown is a bivariate distribution with ρ = .2, but the graph is very
similar to the left panel of Figure 2 where ρ = .8.
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is based on the outlier detection methods outlined in section 2.2. Typically, robust measures
of association and regression methods are designed to give similar results to least squares
regression and Pearson’s correlation when standard assumptions are true. But an additional
goal is to avoid low power and misleading conclusions when standard assumptions are false.
Here it is merely remarked that for the data in Figure 1, a 20% Winsorized correlation is
equal to .34, and the resulting p-value is .002. The so-called OP correlation, which detects
outliers using a projection method, is .42 with a p-value of .003. So robust measures of
association can differ substantially from Pearson’s correlation. (The distinction between
these two robust correlations is discussed in section 3.2.)

Outliers among the independent variable are called leverage points. There are two kinds:
good and bad, which are illustrated in Figure 4. Roughly, a good leverage point is one that is
consistent with the regression line associated with the bulk of the data. One positive appeal
of a good leverage point is that it results in a smaller standard error compared to situations
where there are no leverage points. A bad leverage point has the potential to substantially
affect the least squares regression line in a manner that completely distorts the association
among the majority of the participants. This is illustrated in Figure 5. The left panel deals
with data on the average influent nitrogen concentration (NIN) in 29 lakes and the mean
annual total nitrogen (TN) concentration. Note the obvious leverage points in the lower
right portion of the plot. The nearly horizontal (solid) line is the least squares regression
line using all of the data. Based on the usual Student’s t test, the p-value associated with the
slope is .72. The other regression (dotted) line is the least squares regression line when the
leverage points are removed. The right panel is from the reading study, only now a measure
of digit naming speed (RAN1T) is used to predict the ability to identify words (WWISST2).
The nearly horizontal (solid) line is the least squares regression line using all of the data and
the other (dotted) line is the regression line when the obvious leverage points are removed.

From an inferential point of view, dealing with leverage points is straightforward. Re-
moving outliers among the independent variable does not invalidate the derivation of the
standard error. For the situations in the left panel of Figure 5, eliminating the obvious
leverage points, the p-value is .0003. For the reading study, the p-value associated with the
slope, using all of the data, is .76. Eliminating the six obvious leverage points, the p-value
drops to .002.

2.2 Detecting Outliers

A point worth stressing is that the choice of method for detecting outliers can be crucial.
One can quibble about the best method, but there is no controversy over the fact that a
highly unsatisfactory approach (due to masking) is any method based on the usual mean
and variance. For example, declaring a point an outlier if it is more than two standard
deviations from the mean is highly unsatisfactory due to masking. That is, the very presence
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Figure 4: An illustration of good and bad leverage points.
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Figure 5: Removing leverage points, using a good outlier detection method, can have a large
impact on the estimated regression line and the p-value.
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of outliers can cause all outliers to be missed, regardless of how extreme they might be. The
reason is that although the mean is sensitive to outliers, the standard deviation is even more
sensitive to outliers in the sense that it increases faster, as an outlier becomes more extreme,
than the difference between the outlier and the sample mean. More satisfactory methods
are the boxplot rule and the so-called MAD-median rule. This latter method is applied as
follows. Let M be the usual median based on the observations X1, . . . , Xn. The median
absolute deviation (MAD) is the median of the values |X1 −M |, . . . , |Xn −M |. The value
Xi is declared an outlier if

|Xi −M |
MAD/.6745

> 2.24.

Multivariate data requires more involved techniques. Simply checking for outliers among
the marginal distributions can be unsatisfactory. What is needed is a method that takes into
account the overall structure of the data. For example, it is not unusual to be young, and it
is not unusual to have hardening of the arteries, but it is unusual to be both young and have
hardening of the arteries. A method based on the usual covariance matrix (Mahalanobis
distance) is highly unsatisfactory due to masking. Several methods that deal effectively with
multivariate data are available and described in Wilcox (in press, section 6.4). One general
approach replaces the usual mean and covariance matrix with a robust analog (many of which
have been proposed). A fast and popular choice is the minimum volume ellipsoid estimator.
A criticism, however, is that this method might declare too many points outliers when
sampling from a multivariate normal distribution. A better choice is a so-called projection
method. Both of these methods, plus several others, can be applied with the software
described in section 5.

2.3 Heteroscedasticity

There are at least two serious concerns associated with heteroscedasticity. Let b1 be the
estimate of the slope. Recall from basic principles that when testing the hypothesis that
a slope parameter is equal to zero, the test statistic is based in part on an estimate of the
standard error of b1. But the expression for the standard error is based on the assumption
that there is homoscedasticity. Violating this assumption can result in an actual Type I error
probability exceeding .5 when testing at the .05 level. A positive feature of this approach is
that independence implies homoscedasticity. That is, if there is no association, a reasonable
expression for the standard error is being used. But when there is an association, there is
no reason to assume homoscedasticity. If there is heteroscedasticity, an incorrect estimate
of the standard error is being used that can affect power and the accuracy of any confidence
interval. In fact, the classic estimate of the standard error can differ from a theoretically
sound estimate (which allows heteroscedasticity) by a factor of two. Also, the usual Student’s
t test that Pearson’s correlation is equal to zero, assumes homoscedasticity, which again can
result in poor power and misleading conclusions.
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A seemingly natural strategy is to test the assumption that there is homoscedasticity.
Numerous methods for testing this assumption have been proposed, the majority of which
have been found to be unsatisfactory in terms of controlling the probability of a Type I
error. Two that control the probability of a Type I error reasonably well are available (e.g.,
Wilcox, in press, section 11.3). But a concern about these tests is that they might not have
enough power to detect situations where the violation of the homoscedasticity assumption
results in inaccurate results (e.g., Ng & Wilcox, 2011). A better approach is to use a method
that allows heteroscedasticity. Many such methods are now available that perform about as
well as homoscedastic methods when the homoscedasticity assumption is true. (A possible
argument for testing the hypothesis of homoscedasticity is that it provides a way of detecting
a particular type of dependence that is not detected by other techniques.)

When using least squares regression, methods that estimate a correct expression for
the standard error are available (e.g., Long & Ervin, 2000; Godfrey, 2006; Cribari-Neto,
2004). Two approaches are based on what is called the HC4 estimate of the standard error,
one of which is based in part on a particular bootstrap technique. Extensive simulations
indicate that these methods substantially improve upon homoscedastic methods, but there
are situations where control over the probability of a Type I error remains unsatisfactory
(Ng & Wilcox, 2006; Wilcox, 2012, section 6.4.6), even with a sample size of n = 100. Yet
another concern is that compared to several modern robust regression estimators, the least
squares estimator can have a relatively high standard error, which can result in relatively low
power. Robust regression estimators, coupled with improved hypothesis testing techniques,
deal effectively with this issue. That is, there can be practical advantages to replacing least
squares regression with one of the robust estimators in section 3. Moreover, hypotheses
can be tested using a percentile bootstrap method (outlined in section 3.1), which deals
effectively with heteroscedasticity.

3 Robust Regression Methods

There are numerous robust regression estimators designed to deal with outliers. Currently,
the most comprehensive summary, including a discussion of their relative merits, is given in
Wilcox (in press, chapter 9). Although space limitations prohibit a thorough summary of
all the estimators available, an outline of the strategy behind a few of the estimators should
reveal their operating characteristics.

Momentarily consider the situation where there is one independent variable only. The
Theil (1950) and Sen (1968) estimator is applied as follows. Compute the slope of the line
between each pair of distinct points. The median of all such slopes is the Theil–Sen estimate
of the slope, say bts. The intercept is taken to be My − btsMx, where My and Mx are the
median of the dependent and independent variables, respectively. There are several ways
of extending this estimator to situations where there is more than one independent variable
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(Wilcox, in press, section 10.2), but the details are not important here.

Another general approach is to determine the slopes and intercept that minimizes some
robust measure of variation applied to the residuals. There are many robust scale estimators
(measures of variation), comparisons of which have been made by Lax (1985) and Randal
(2008). The so-called percentage bend midvariance performs relatively well. A somewhat
related approach is least trimmed squares where the goal is to determine the slopes and
intercepts so as to minimize the sum of the squared residuals, ignoring some specified pro-
portion of the largest residuals. (This strategy has some similarities to a trimmed mean.)
Yet another general approach is based on what are called M-estimators. A crude description
is that M-estimators empirically downweight or eliminate unusually large or small residuals.
(The formal definition of an M-estimator is more involved.) Two that perform relatively
well are the Coakley and Hettmansperger (1993) estimator and the MM-estimator derived
by Yohai (1987). There are conditions where all of these estimators offer a substantial ad-
vantage over least squares regression in terms of power, control over the probability of a Type
I error probability, and the ability to avoid misleading summaries of data due to outliers.
When standard assumptions are true, least squares does not offer much of an advantage.
However, no single regression estimator is always best. The Theil–Sen estimator and the
MM-estimator seem to perform relatively well but there are practical reasons for considering
other estimators that are difficult to explain quickly. (See Wilcox, in press, chapter 10.)

3.1 Hypothesis Testing

For some robust regression estimators, expressions for the standard errors are available. But
hypothesis testing methods based on estimates of the standard error are not recommended
for two reasons. First, homoscedasticity is assumed. Second, test statistics that make use of
these standard errors can perform poorly when dealing with skewed distributions. (This is
generally true for M-estimators.) A better approach is to use a percentile bootstrap method,
which performs well, in terms of Type I errors, even when there is heteroscedasticity and
when distributions are skewed. The hypothesis that all slope parameters are equal to zero can
be tested using the software described in section 5, but the involved computational details
are not given here. However, to at least impart the flavor of the method, it is described when
the goal is to test the hypothesis that a slope parameter is zero.

Suppose the goal is to test the hypothesis that the slope parameter is equal to zero.
A percentile bootstrap begins by resampling with replacement, n vectors of observations
from the observed data having sample size n. Compute the estimate of the slope and label
it b∗. Repeat this process B times, determine the proportion of times b∗ is greater than
the hypothesized value, and label the result P . (In terms of controlling the Type I error
probability, B = 600 appears to suffice.) A p-value is given by

2min(P, 1− P )
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(Liu & Singh, 1997). A .95 confidence interval corresponds to the middle 95% of the b∗

values after the values are put in ascending order. (A global test that all slope parameters
are equal to zero is available as well.)

The method just described appears to perform very well when using a robust regression
estimator designed to deal with outliers. But when using least squares regression, alternative
methods should be used that seem a bit more satisfactory (Wilcox, 2012, sections 6.4.6 and
7.7).

3.2 Measures of Association

A simple robust analog of Pearson’s correlation is the Winsorized correlation. Recall that
trimming 20% means that the 20% smallest and largest values are removed. Winsorizing data
means that rather than remove the smallest observations, they are set equal to the smallest
value not trimmed. Similarly, the largest 20% of the observations are set equal to the largest
value not trimmed. Like Spearman’s rho and Kendall’s tau, the Winsorized correlation
guards against outliers among the marginal distributions, but it does not take into account
the overall structure of the data. A method that does is the OP measure of correlation,
which is based in part on a projection method for detecting outliers. Simple methods for
testing the hypothesis of no association are available, assuming homoscedasticity. To avoid
sensitivity to heteroscedasticity, a percentile bootstrap method can be used.

Another general approach to measuring association is explanatory power, which has the
advantage of being readily applied when dealing with curvature. For a set of predictors,
X1, . . . Xn, let Ŷi be the predicted value of the dependent variable based on Xi, the ith
vector of observations, and some regression model. Explanatory power is the variance of
the predicted Y values, the Ŷi values, divided by the variance of the observed Y values. A
robust version is obtained simply by replacing the variance with some robust measure of
scatter. One of the better choices is the percentage bend midvariance, but arguments for
considering other measures of variation can be made. If Ŷi values are based on the least
squares regression estimator, and the usual variance is used, explanatory power reduces
to r2, the squared Pearson correlation. The square root of explanatory power is called the
explanatory measure of association.

4 Curvature

Modern technology offers an array of tools for dealing with curvature that can make a
substantial difference in our understanding of data, including the goal of determining whether
an association exists (e.g. Efromovich, 1999; Eubank, 1999; Fan and Gijbels, 1996; Fox, 2001;
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Green and Silverman, 1993; Gyofri et al., 2002; Härdle, 1990; Hastie and Tibshirani, 1990;
Wilcox, 2012, in press). Of particular importance are smoothers, which provide a flexible
approach to approximating a regression surface. Experience with smoothers makes it clear
that the more obvious classical parametric models for dealing with curvature can be highly
unsatisfactory, particularly when dealing with more than one predictor. Some illustrations
supporting this statement are given in section 6. Modern methods for dealing with curvature
can reveal strong associations that otherwise would be missed using the more traditional
techniques, as will be seen.

Imagine that the typical outcome of some dependent variable is given by some unknown
function m(X1, . . . , Xp) of the p predictors (X1, . . . , Xp). A crude description of smoothing
techniques is that they identify which points, among n vectors of observations, are close to
(X1, . . . , Xp), and then some measure of location is computed based on the corresponding Y
values. The result is m̂(X1, . . . , Xp), an estimate of the measure of location associated with
Y at the point (x1, . . . , xp). The estimator m̂ is called a smoother, and the outcome of a
smoothing procedure is called a smooth (Tukey, 1977). A slightly more precise description
of smoothers is that they are weighted averages of the Y values with the weights a function
of how close the vector of predictor values is to the point of interest. In more formal terms,
one estimates m(x1, . . . , xp) with

m̂(x1, . . . , xp) =
∑

wiyi, (1)

and the goal is to choose the wi values in some reasonable manner. Many suggestions
regarding the choice of weights have been made. The illustrations used here are based on
methods derived by Cleveland (1979) as well as Cleveland and Devlin (1988).

Note that for the case of a single independent variable, an estimate of Y can be computed
for each observed Xi value (i = 1, . . . n). Plotting the estimates versus the Xi values provides
a graphical indication of the regression line. (Various refinements of this strategy have been
derived.) In a similar manner, when there are two independent variables, again a graphical
representation of the regression surface can be created. Such graphs can be invaluable when
trying to detect and describe an association. Moreover, there are inferential methods based
on these smoothers. For example, one can test the hypothesis that a regression line is straight
or that it has a particular parametric form. Smoothers provide a much more flexible approach
to comparing groups when there is a covariate. These modern ANCOVA methods effectively
deal with non-normality and heteroscedasticity as well. Moreover, moderator analyses can
be performed that can greatly enhance the probability a detecting a true interaction when
there is curvature.

Generally, smoothers can be used to compute predicted Y values for each observed X
value. These predicted Y values can be used in turn to compute a robust measure of
explanatory power.
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5 Software

Of course, modern robust methods are useless without access to appropriate software. The
free software R, which can be downloaded from www.R-project.org, is easily the best software
for dealing with this issue. The power and flexibility of R help explain why it dominates
among statistics books written by statisticians, as well as why it is beginning to be replace
SPSS among some psychologists. (SPSS is hopelessly antiquated when it comes to taking
advantage of modern technology.) All of the illustrations in this paper are based on R
in conjunction with the R functions described and illustrated in Wilcox (2012, in press).
Wilcox’s R package contains over 950 functions for applying modern methods.

Using R to apply robust regression methods is straightforward. For example, if the data
for one or more predictors are stored in the R variable x, and the dependent variable is stored
in y, the R command tsreg(x,y) computes the Theil–Sen regression estimator. The command
tsreg(x,y,xout=T,outfun=outpro) computes the Theil–Sen estimator after removing leverage
points via a projection method for multivariate data. The functions regci and regtest test
hypotheses. By default, the Theil–Sen estimator is used, but any robust regression estimator
can be used via the argument regfun. The functions lplot, lintest, and adtest plot an estimate
of the regression surface, test the hypothesis that a linear model fits the data, and tests the
hypothesis that there is no interaction, respectively. The function scor computes the OP
measure of association.

6 More Illustrations

The first two illustrations stem from an unpublished study by G. Stratton, N. Miller and
B. Lickel dealing with the black sheep effect, which refers to an exaggerated harsh response
to a negatively deviant ingroup member by comparison with a similarly deviant outgroup
member. A portion of the study dealt with the association between a measure of effect
size (Cohen’s d) from 99 studies and various independent variables. One of these variables,
labeled expectancies of the outgroup, was found to have a Pearson correlation of −.15 with
a p-value of .15 based on the usual Student’s t test. However, look at the regression line
shown in Figure 6 based on a smoother. (The R function lplot was used.) It suggests that
initially there is a negative association, but at some point the association virtually disappears.
The explanatory strength of association is .21. The hypothesis that the regression line is
straight is rejected at the .028 level. That is, the data indicate that there is an association,
but it is not well represented by a straight line. Experience with smoothers suggests that
it is common to encounter situations where there is an association over some range of an
independent variable, but that otherwise there is little or no association.
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Figure 6: It is common to encounter situations, such as shown here, where there is an
association over some range of the independent variable but otherwise no association is
found.
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Figure 7: Curvature can be an issue with two predictors, even when it is not an issue for the
individual predictors

When dealing with more than one independent variable, taking into account curvature can
make a more striking difference. Again consider the Stratton et al. study, only now focus
on the variables group norm violation and stereo type relevancy. The Pearson correlations
with Cohen’s d are .03 and .05, respectively. The corresponding Student’s t test p-values
are .78 and .63. A smooth for each of the regression lines appears to be reasonably straight
and horizontal. But this is not compelling evidence that, when taking together, there is no
curvature (e.g., Berk & Booth, 1995). Figure 7 shows a smooth of the regression surface
when both predictors are used simultaneously. (Leverage points were removed using the
MVE method.) The robust explanatory measure of association is .46 and the hypothesis
that the regression surface is a plane is rejected at the .04 level.

In another unpublished study by S. Tom and D. Schwartz, one goal was to understand
the association between a Totagg score and two predictors: grade point average (GPA) and
a measure of academic engagement. The Totagg score was a sum of peer nomination items
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Figure 8: The left panel shows the regression surface based on the usual interaction model,
which uses the product of the two predictors. The right panel shows an approximation of
the regression surface using a smoother, which provides a more flexible approach to dealing
with curvature.

that were based on an inventory that included descriptors focusing on adolescents’ behaviors
and social standing. (The peer nomination items were obtained by giving children a roster
sheet and asking them to nominate a certain amount of peers who fit particular behavioral
descriptors.) The sample size was n = 336. One issue is whether there is an interaction
between these two predictors. If we use least squares regression and the usual product term,
the p-value is .64 using the HC4 method for dealing with heteroscedasticity. The left panel
of Figure 8 shows a plot of the regression surface based on this standard approach. (The plot
was created with the R function ols.plot.inter.) The right panel shows an approximation of
the regression surface using a smoother. (The R function lplot was used.) This more flexible
approach to approximating the regression surface differs in obvious ways from the left panel.
Testing the hypothesis of no interaction (using the R function adtest), the p-value is less
than .01.
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The next example stems from the Well Elderly study (Clark et al., 1997). One of the
many goals was to understand the association between depression and two biomarkers: dehy-
droepiandrosterone (DHEA) and cortisol, both of which are produced by the adrenal glands
and known to be associated with stress and depression. Figure 9 shows an estimate of the
regression surface when predicting depression as measured by the Center for Epidemiologic
Studies Depression Scale (CESD), and when DHEA and cortisol are measured upon awaken-
ing. (The CESD was developed by Radloff, 1977.) The estimated strength of the association
is .25. (Leverage points were identified using a projection method and then removed.) The
plot indicates that for low cortisol, as DHEA increases, depression decreases up to a point
and then levels off. However, when cortisol is relatively high, depression is relatively high
even when DHEA is high. The hypothesis that the regression surface is a plane is rejected,
p < .002. The hypothesis of no interaction is rejected as well, p < .002. In contrast, no
association is found using the usual F test associated with the least squares estimator, and
no association is found using the Theil–Sen estimator.

7 Some Suggestions Regarding How To Proceed

Different methods are sensitive to different features of the data. No single method is always
optimal. But some general guidelines regarding how to proceed might help:

• If the goal is to make inferences about the slope parameters using a linear model, use
a method that allows heteroscedasticity.

• If a homoscedastic method is used, interpret it properly: if it rejects, there is depen-
dence. But the main reason for rejecting might be due to heteroscedasticity. Never
conclude there is no association based on a homoscedastic method.

• Consider what happens when leverage points are removed. (This is easily done with
the R functions used here by setting the argument xout=T.)

• Consider a robust regression estimator that deals effectively with outliers among the
dependent variable.

• Consider methods that provide a flexible approach to curvature. In particular, use
regression smoothers as a partial check on the nature of the association. Never assume
that curvature can be ignored. With one or two independent variables, plot a smooth
of the regression surface. (The R function lintest can be used to test the hypothesis
that a particular parametric model fits the data.)
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ening.
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8 Concluding Remarks

Vast sums of money and time are spent on collecting data relevant to a wide range of im-
portant and interesting issues. The weak link in this process is clear: data analyses. Modern
technology offers a variety of improved tools for discovering associations and describing them
in a more accurate and informative manner.

Modern methods offer advantages that go beyond the scope of this paper. For example,
many introductory statistics books still claim that with a sample size of 30 or more, normality
can be assumed. There are reasons for this claim, but two issues were missed when studying
the properties of the central limit theorem. If attention is restricted to standard inferential
methods, there are general conditions where even a sample size of 300 does not suffice.
There are techniques for dealing with this issue, they can make a practical difference in our
understanding of data, so it is suggested that they be considered when analyzing data.

To add perspective, consider all of the methods that are routinely taught and used, in-
cluding all ANOVA designs and classic nonparametric methods. Generally, these methods
perform well, in terms of Type I error probabilities when comparing groups that have iden-
tical distributions or when testing hypotheses about associations when in fact there is no
association. When groups differ, or when there is an association, of course they might con-
tinue to perform well. But for a broad range of situations, this is not the case. Techniques
for dealing with known problems are now available. Although some researchers are aware of
modern methods and take advantage of them, it is evident that generally this is not the case.
This raises an important issue: How many discoveries are lost by ignoring modern methods?
All indications are that the answer is more than what would be expected based on standard
training.
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