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Abstract

The problem considered in this paper is the approximation of sets
of perceptual objects that are qualitatively near each other. A per-
ceptual object is either something presented to the senses or knowable
by the mind. Objects that have the same appearance are considered
qualitatively near each other, i.e., objects with matching descriptions.
The term approximate means very near, in position or in character.
The solution to the problem of approximating sets of perceptual ob-
jects results from a generalization of the approach to the classification
of objects introduced by Zdzis�law Pawlak’s during the early 1980s. This
generalization leads to the introduction of near sets. In addition, a for-
mal explanation of the predicate near relative to near objects, near sets
and nearness approximation spaces is given. The contribution of this
paper is a formal basis for the discovery of perceptual objects that are
qualitatively near each other.
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1 Introduction

The problem considered in this article is the approximation of sets of perceptual
objects that are qualitatively near each other. Perceptual objects that have
the same appearance are considered qualitatively near each other, i.e., objects
with matching descriptions. A description is a tuple of values of functions
representing features of an object. For simplicity, assume the description of an
object consists of one function value. For example, let b ∈ L, b′ ∈ L′ be books
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contained in two libraries L, L′ and φ(b) = number of pages in b, where book
length is a feature of a book and φ is a sample function representing book
length. Then book b is near book b′ if φ(b) = φ(b′).

Sets X, X ′ are considered near each other if, and only if there exist objects
x ∈ X, x′ ∈ X ′ such that x, x′ have matching descriptions. In that case,
X, X ′ are called near sets. This means that the predicate is near applied to
either objects or sets is defined relative to description and not in terms of set
membership. In effect, it is possible to have X ∩X ′ = ∅ (non-intersecting sets)
and, yet, the assertion x ∈ X is near x′ ∈ X ′ is true if, only if x, x′ having
matching descriptions to some degree. Notice that if we replace X ′ by X, we
arrive at a special case where a single set is considered a near set. That is, a
single set X containing two or more objects that have matching descriptions
is considered a near set.

The phrase qualitatively near is close to the usual understanding of the
adjective similar [15]. Insight into the perception of near objects comes from
Zdzis�law Pawlak’s work on classification of objects [20, 21, 22] and from Ewa
Or�lowska’s observation about approximation spaces as formal counterparts of
perception [16]. The formal theory of near sets presented in this paper is related
to the study of information theory considered in the context of information
systems in rough set theory [5] and the recent study of dialogue considered
in the context of approximation spaces [6]. The focus of this paper is on the
possibility of perceptual synthesis1, an interpretation of perception suggested
by Rabindranath Tagore [47]. In the context of near sets, this synthesis results
from an extension of the approach to approximation spaces introduced by
Zdzis�law Pawlak and Ewa Or�lowska during the 1980s.

An understanding of perception either by humans or imitated by thinking
machines entails a consideration of the appearances of objects characterized by
functions representing object features. In this paper, a formal explanation of
the predicate near is given relative to near objects, near sets and nearness ap-
proximation spaces. Recall that in grammar and logic, a predicate is something
that is asserted about the subject of a sentence or concerning the argument of
a proposition. Hence, in some sense, we can assert that one perceptual object
is near another object or one set of perceptual objects is near another set of
perceptual objects.

In this paper, the term near is used to characterize either the correspon-
dence between perceptual objects or the affinity between sets containing per-
ceptual objects with matching descriptions. A perceptual object is either some-
thing presented to the senses or knowable by the mind [15]. This can be
explained informally in the following way.

Perceptual objects are considered near each other if the objects have similar
descriptions to some degree. For example, two peas in a pod are considered

1i.e., perception on the level of classes rather than on the level of individual objects.
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near each other if they have approximately the same colour or shape or weight
independent of the relative position of the peas. A set of perceptual objects is a
near set if it contains objects that are near each other. Hence, any equivalence
class containing perceptual objects with matching descriptions is a near set.
Again, for example, any set of buildings in the same village is a near set if one
considers location as part of the description of the buildings. Any non-empty
rough set contains one or more equivalence classes, i.e. sets containing objects
with matching descriptions. Hence, any rough set is a near set.

By contrast with work on proximity spaces by Efremovic̆ [9], this paper
points to a more general understanding of nearness that is not restricted to
spatial proximity. A realization of the proposed approach to the perception
of objects can be found in approximate adaptive learning introduced in [31]
and a number of studies of biologically-inspired machine learning [14, 25, 27,
29, 31, 32, 35, 33, 34, 37, 38], nearness in approximation spaces [28, 29], and
the near set approach to set approximation [11, 23, 24]. The contribution of
this article is a presentation of a formal basis for the discovery of perceptual
objects that are near each other.

This paper is organized as follows. A brief overview of the approach to
object description is given in Sect. 2. The notation, definitions and theorems
concerning the nearness of objects and set approximation are covered in Sect. 3
and Sect. 4. Nearness approximation spaces are presented in Sect. 5.

2 Object Description

Table 1: Description Symbols

Symbol Interpretation

� Set of real numbers,
O Set of perceptual objects,
X X ⊆ O, set of sample objects,
x x ∈ O, sample object,
F A set of functions representing object features,
B B ⊆ F ,
φ φ : O → �L, object description,
L L is a description length,
i i ≤ L,
φi φi ∈ B, where φi : O −→ �, probe function,

φ(x) φ(x) = (φ1(x), φ2(x), φ3(x), . . . , φi(x), . . . , φL(x)).

Objects are known by their descriptions. An object description is defined
by means of a tuple of function values φ(x) associated with an object x ∈ X
(see (1)). The important thing to notice is the choice of functions φi ∈ B used
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to describe an object of interest. Assume that B ⊆ F (see Table 1) is a given
set of functions representing features of sample objects X ⊆ O. Let φi ∈ B,
where φi : O −→ �. In combination, the functions representing object features
provide a basis for an object description φ : O −→ �L, a vector containing
measurements (returned values) associated with each functional value φi (x)
in (1), where the description length |φ| = L.

Object Description : φ(x) = (φ1(x), φ2(x), . . . , φi(x), . . . , φL(x)). (1)

The intuition underlying a description φ(x) is a recording of measurements
from sensors, where each sensor is modelled by a function φi.

2.1 Sample Behaviour Description

Table 2: Sample ethogram

xi s a p(s, a) r d

x0 0 1 0.1 0.75 1
x1 0 2 0.1 0.75 0
x2 1 2 0.05 0.1 0
x3 1 3 0.056 0.1 1
x4 0 1 0.03 0.75 1
x5 0 2 0.02 0.75 0
x6 1 2 0.01 0.9 1
x7 1 3 0.025 0.9 0

By way of illustration, consider the description of the behaviour observable
in biological organisms. For example, a behaviour can be represented by a
tuple

(s, a, p(s, a), r)

where s, a, p(s, a), r denote organism functions representing state, action, ac-
tion preference in a state, and reward for an action, respectively. A reward r
is observed in state s and results from an action a performed in the previous
state. The preferred action a in state s is calculated using

p(s, a)← p(s, a) + βδ(r, s),

where β is the actor’s learning rate and δ(r, s) is used to evaluate the quality
of action a (see [27]). In combination, tuples of behaviour function values form
the following description of an object x relative to its observed behaviour:

Organism Behaviour : φ(x) = (s(x), a(x), r(x), V (s(x))).

Table 2 is an example of what is known as a rough ethogram [36, 39], a tabu-
lation of observed behaviours of an organism.
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3 Nearness of Objects

Approximate, a [L. approximat-us to draw near to.]
A. adj.
1. Very near, in position or in character;
closely situated; nearly resembling.

–Oxford English Dictionary, 1933.

Table 3: Relation and Partition Symbols

Symbol Interpretation

∼B {(x, x′) | f(x) = f(x′) ∀f ∈ B}, indiscernibility relation,
[x]B [x]B = {x′ ∈ X | x′ ∼B x}, elementary set (class),
O/ ∼B O/ ∼B= {[x]B | x ∈ O}, quotient set,

ξB Partition ξB = O/ ∼B,
Δφi Δφi = φi(x

′)− φi(x), probe function difference.

Sample objects X ⊆ O are near each other if, and only if the objects have
similar descriptions. Recall that each φ2 defines a description of an object (see
Table 1). Then let Δφi denote

Δφi = φi(x
′)− φi(x),

where x, x′ ∈ O. The difference Δφ leads to a definition of the indiscernibility
relation ∼B introduced by Zdzis�law Pawlak [21] (see Def 3.1).

Definition 3.1 Indiscernibility Relation
Let x, x′ ∈ O, B ∈ F .

∼B= {(x, x′) ∈ O ×O | ∀φi ∈ B � Δφi = 0} ,
where i ≤ |φ| (description length).

Definition 3.2 Nearness Description Principle (NDP)
Let B ⊆ F be a set of functions representing features of objects x, x′ ∈ O.
Objects x, x′ are minimally near each other if, and only if there exists φi ∈
B such that x ∼{φi} x′, i.e., Δφi = 0.

2In a more general setting that includes data mining, φi would be defined to allow for
non-numerical values, i.e., let φi : X −→ V , where V is the value set for the range of φi [40].
This more general definition of φi ∈ F is also better in setting forth the algebra and logic of
near sets after the manner of the algebra and logic of rough sets [1, 2, 4, 7, 40]. Real-valued
probe functions are used in object descriptions in this article because we have science and
engineering applications of near sets in mind.
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In effect, objects x, x′ are considered minimally near each other whenever
there is at least one probe function φi ∈ B so that φi(x) = φi(x

′). A probe
function can be thought of as a model for a sensor (see, e.g., [8, 10, 19, 26]).
Then φi constitutes a minimum description of the objects x, x′ that makes
it possible for us to assert that x, x′ are near each other. Ultimately, there
is interest in identifying the probe functions that lead to partitions with the
highest information content. The nearness description principle (NDP) differs
markedly from minimum description length (MDL) proposed by Jorma Rissa-
nen [41]. MDL deals with a set X = {xi | i = 1, . . . } of possible data models
and a set Θ of possible probability models. By contrast, NDP deals with a set
X that is the domain of a description φ : X −→ �L and the discovery of at
least one probe function φi(x) in a particular description φ(x) used to identify
similar objects in X. The term similar is used here to denote the presence of
objects x, x′ ∈ X and at least one φi in object description φ, where x ∼φi

x′. In
that case, objects x, x′ are said to be similar. This leads to a feature selection
method, where one considers combinations of n probe functions r in search-
ing for those combinations of probe functions that lead to partitions with the
highest information content (see, e.g., [30]).

Observation 3.3 Near Objects in a Class
Let ξB = O/ ∼B denote a partition of O. Let [x]B ∈ ξB denote an equivalence
class. Assume x, x′ ∈ [x]B. From Table 3 and Def. 3.1, we know that for each
φi ∈ B, Δφi = 0. Hence, from Def. 3.2, x, x′ are near objects.

Theorem 3.4 The objects in a class [x]B ∈ ξB are near objects.

Proof 3.4.1 The nearness of objects in a class follows from Obs. 3.3. �

Definition 3.5 Measure of Object Nearness
Let B ⊆ F be a set of functions representing features of objects in O. Let
X, X ′ ⊆ O denote a set of objects of interest and set of test objects, respec-
tively. Let φi ∈ B, where i ≤ |B|. Let μB

X : ℘(O) −→ [0, 1] denote a capacity
function defined by

μB
X (X ′) =

|{φi ∈ B | x ∈ X, x′ ∈ X ′ � x ∼φi
x′}|

|B| .

Example 3.6 Sample Near Objects Let O denote a set of sample pieces
of furniture. Let XThai, XWpg ⊆ O denote a set of tables in Bankok, Thailand
(Thai) and a set of chairs in Winnipeg (Wpg), Manitoba, respectively. Assume
that probe function φi ∈ B ⊆ F represents a feature of furniture in O. Further,
assume i ≤ |B| = 5 and that table x ∈ XThai and chair x′ ∈ XWpg have a
matching description only in terms of φi. That is, in the case where x ∼φi

x′

for a Thai table x and a Wpg chair x′, we have

μB
XThai

(XWpg) =
1

5
.
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3.1 Near Sets

The basic idea in the near set approach to object recognition is to compare
object descriptions. Sets of objects X, X ′ are considered near each other if the
sets contain objects with at least partial matching descriptions.

Definition 3.7 Near Sets
Let X, X ′ ⊆ O, B ⊆ F . Set X is near X ′ if, and only if there exists x ∈
X, x′ ∈ X ′, φi ∈ B such that x ∼{φi} x′.

Object recognition problems, especially in images [3, 11], and the problem
of the nearness of objects have motivated the introduction of near sets (see,
e.g., [23, 28]).

Remark 3.8 If X is near X ′, then X is a near set relative to X ′ and X ′

is a near set relative to X. Notice that if we replace X ′ by X in Def. 3.7, this
leads to what is known as reflexive nearness.

Definition 3.9 Reflexive Nearness
If x, x′ ∈ X and x is near x′, then by Def. 3.7 X is a near set relative to itself.
In fact, X is a near set.

Observation 3.10 Class as a Near Set
By definition, a class [x]B in a partition ξB is a set of objects having matching
descriptions (set Table 3), i.e., if x, x′ ∈ [x]B, then x ∼B x′.

Theorem 3.11 A class in a partition ξB is a near set.

Proof 3.11.1 From Obs. 3.10 and from Def. 3.9, we know that a class
[x]B ∈ ξB is a near set. �

Affinities between objects of interest in the set X ⊆ O can be discovered by
considering the relation between X and objects in elementary sets in partition
O/ ∼B. Approximation of the set X begins by determining which elementary
sets [x]B ⊆ O/ ∼B are subsets of X.

Observation 3.12 Near Partition of Objects
Assume that ∼B (Def. 3.1) is an equivalence relation that defines a partition
ξB = O/ ∼B, i.e., a partition of O. Let [x]B ∈ ξB denote an equivalence class.
This means that ∀φi ∈ B, x ∼B x′ ∀x, x′ ∈ [x]B.

Theorem 3.13 A partition ξB is a near set.

Proof 3.13.1 From Obs. 3.12 and Theorem 3.11, the classes in partition
ξB are near sets. In effect, ξB contains objects that are near each other. Hence,
ξB is a near set. �
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Definition 3.14 Hierarchy of Near Sets
If X ′, X ′′ ⊆ X and X ′, X ′′ are near sets, then by extension of Def. 3.9 X is
a near set.

Observation 3.15 Inherited Nearness
By implication from Def 3.14, any set that contains a near set is itself consid-
ered a near set.

Theorem 3.16 A set containing a near set is itself a near set.

Proof 3.16.1 Assume a set X contains a near set. From Def. 3.14 and
Obs. 3.15, X is a near set. �

3.2 Near Sets and Verisimilitude

The better theory is the more precise description
of the [object] it provides.

–Ewa Or�lowska, Studia Logica, 1990.

Truth values can be associated with assertions about the nearness of indi-
vidual objects as well as sets of objects. Let (O, F) denote an information
system, where B ⊆ F . Consider, for example, the following strong nearness
condition: sets X, X ′ ⊆ O are strongly near each other in the case where there
exists objects x ∈ X, x′ ∈ X such that x ∼B x′ ∀φi ∈ B. One might postulate
the concept of strong nearness and evaluate the verisimilitude3 of an assertion
about the nearness of sets X, X ′ in terms of whether the sets satisfy the strong
nearness condition. This is in keeping with the notion of verisimilitude useful
in the comparison of theories resulting from learning concepts [18].

4 Fundamental Approximation Space

This section presents a number of near sets resulting from the approximation
of one set by another set. Approximations are carried out within the context
of a fundamental approximation space FAS = (O, F , ∼B), where O is a
set of perceived objects, F is a set of probe functions representing object
features, and ∼B is an indiscernibility relation defined relative to B ⊆ F . The
space FAS is considered fundamental because it provided a framework for the
original rough set theory [21]. It has also been observed that an approximation
space is the formal counterpart of perception [16]. Approximation starts with
the partition ξB of O defined by the relation ∼B. Next, any set X ⊆ O is
approximated by considering the relation between X and the classes [x]B ∈
ξB, x ∈ O. To see this, consider first the lower approximation of a set.

3i.e., the appearance of being true [15].
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4.1 Lower Approximation of a Set

From the first dawn of life, all organic beings are found
to resemble each other in descending degrees,
so that they can be classed in groups under groups.

–Charles Darwin, On the Origin of the Species, XIII, 1859.

Table 4: Approximation Notation

Symbol Interpretation

(O, F , ∼B) Fundamental approximation space (FAS), B ⊆ F ,
B∗X

⋃
x:[x]B⊆X [x]B , B-lower approximation of X,

B∗X
⋃

x:[x]B∩X �=∅[x]B, B-upper approximation of X,
BndBX BndBX = B∗X \ B∗X = {x | x ∈ B∗X and x /∈ B∗X}.

This section and its sequel introduce the basic approach to approximation
introduced by Zdzis�law Pawlak (see, e.g., [21, 22]) and elaborated by others
during the early 1980s (see, e.g., [13, 16, 17]). The indiscernibility relation
∼B defines the partition of a set of objects O into elementary sets (classes)
containing objects with matching descriptions. The net result of this partition
is the classification of the objects in O. Each elementary set [x]B ∈ O/ ∼B

represents an information granule, a distillation of our knowledge represented
by the matching descriptions for all objects in [x]B relative to the functions in
B.

Affinities between objects of interest in the set X ⊆ O and classes in the
partition ξB can be discovered by identifying those classes that have objects
in common with X. Approximation of the set X begins by determining which
elementary sets [x]B ∈ O/ ∼B are subsets of X. This discovery process leads
to the construction of what is known as the B-lower approximation of X ⊆ O,
which is denoted by B∗X in (2).

B∗X =
⋃

x:[x]B⊆X

[x]B . (2)

In effect, if B∗X (B-lower approximation of X) is not empty, then the objects
in each class in B∗X have descriptions (i.e., function values for each function
f ∈ B) matching the descriptions of the corresponding objects in X.

Observation 4.1 Lower Approximation as a Near Set
The lower approximation B∗X of a set X is populated with classes that are
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subsets of X. From Theorem 3.11, each class is a near set. From Def. 3.14,
we also know that X can be viewed as a hierarchy of near sets represented by
one or more classes [x]B ⊆ B∗X ⊆ X.

Lemma 4.2 The lower approximation B∗X of a set X is a near set.

Theorem 4.3 If a set X has a non-empty lower approximation B∗X, then
X is a near set.

Proof 4.3.1 Given a set X with a non-empty lower approximation B∗X,
then each class in B∗X is a subset of X. From Theorem 3.11, each class is a
near set. It follows from Obs 4.1, Lemma 4.2 and Theorem 3.16 that X is a
near set. �

4.2 Upper Approximation of a Set

To begin, assume that X ⊂ O, where X contains perceived objects that are
in some sense interesting. Also assume that B contains functions representing
features of objects in O. A B-upper approximation of X is defined in (3).

B∗X =
⋃

x:[x]B∩X �=∅
[x]B. (3)

If we start with a set O containing perceived objects, then B∗X is interpreted
relative to a set X ⊆ O. By contrast with a B-lower approximation, the B-
upper approximation B∗X is a collection of equivalence classes [x]B ∈ O/ ∼B,
where each class in B ∗X contains at least one object with a description that
matches the description of an object in X. Notice that B∗X is always a subset
of B∗X. Notice, also, that there may or may not be one or more equivalence
classes [x]B ∈ O/ ∼B that are not subsets of B∗X.

Observation 4.4 Upper Approximations Are Near Sets
From Def. 3.14 and Theorem 4.5, an upper approximation B∗X of a set X
is a near set, since B∗X contains one or more classes that are near sets. By
definition, B∗X and X have one or more objects in common and the common
objects have matching descriptions.

Theorem 4.5 The upper approximation B∗X and the set X are near sets.

Proof 4.5.1 Given the upper approximation B∗X and the set X, we know
from Theorem 3.11 that the classes in B∗X are near sets. Hence, from Theo-
rem 3.16, B∗X is a near set. From Obs. 4.4, we know that B∗X and the set
X have common objects with matching descriptions. Hence, from Def. 3.7, we
can conclude that B∗X and the set X are near sets. �
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The question concerning the extent that a class [x]B ∈ B∗X belongs to X
is answered in an approximate (“nearly”) way, depending on the proportion of
the objects in [x]B that are included in X4. The next problem to consider is
the extent that B∗X approximates (is near to) the set X. There are a number
of solutions to this problem.

4.3 Boundary Region

The lower and upper approximations of a set lead naturally to the notion of
a boundary region of an approximation defined in terms of set difference. Let
Y, Y ′ ⊆ O. The notation Y \ Y ′ denotes set difference. Put

Y \ Y ′ = {x | x ∈ Y and x /∈ Y ′}.
Let BndBX denote the boundary region of an approximation defined as shown
in (4).

BndBX = B∗X \ B∗X = {x | x ∈ B∗X and x /∈ B∗X}. (4)

Observation 4.6 Rough Set with a Non-Empty Boundary
A set X is considered rough whenever the boundary of an approximation is not
empty, i.e., X is roughly or approximately known relative to the functions in B
if, and only if BndBX �= ∅, i.e., |BndBX| > 0. In that case, X is a rough set.
Assume BndBX �= ∅. Then the lower approximation B∗X is a proper subset
of upper approximation B∗X. From Lemma 4.2, we also know that the lower
approximation B∗X of the set X is a near set. Each class in B∗X is a subset
of X. Hence, X is a near set (see Theorem 4.8, case 1).

Observation 4.7 Near Set with an Empty Boundary
It should also be observed that whenever BndBX = ∅, this means that |BndBX| =
0, B∗X = B∗X and B∗X ⊆ X. From this, we know that B∗X and X share
objects that have matching descriptions. Hence, X is a near set (see Theo-
rem 4.8, case 2).

Theorem 4.8 Fundamental Near Set Theorem
A set X with an approximation boundary |BndBX| ≥ 0 is a near set.

Proof 4.8.1 There are two cases to consider.

1. |BndBX| > 0. Given a set X ⊂ O that has been approximated with
a non-empty boundary, this means that X has a lower approximation
B∗X � B∗X (i.e., B∗X is a proper subset of B∗X). The classes [x]B ∈
B∗X are members of the partition ξO. From (2), the set X contains the
classes in B∗X. From Theorem 4.3, X is a near set.

4This is essentially the approach that was originally suggested in [13, 21].
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2. |BndBX| = 0. Given a set X that has been approximated with an empty
boundary, this means that B∗X = B∗X and from (2) B∗X ⊆ X. It
follows from Theorem 4.3 and Obs. 4.7 that X is a near set.

�

5 Nearness Approximation Spaces

Table 5: Nearness Approximation Space Symbols

Symbol Interpretation

B B ⊆ F ,
Br r ≤ |B| probe functions in B,
∼Br Indiscernibility relation defined using Br,
[x]Br

[x]Br
= {x′ ∈ O | x ∼Br x′}, equivalence class,

O/ ∼Br O/ ∼Br=
{

[x]Br
| x ∈ O}

, quotient set,
ξO,Br Partition ξO,Br = O/ ∼Br ,

r
(|B|

r

)
, i.e., |B| functions φi ∈ B taken r at a time,

Nr(B) Nr(B) = {ξO,Br | Br ⊆ B}, set of partitions,
νNr νNr : P(O)× P(O) −→ [0, 1], overlap function,

Nr(B)∗X Nr(B)∗X =
⋃

x:[x]Br⊆X [x]Br , lower approximation,
Nr(B)∗X Nr(B)∗X =

⋃
x:[x]Br∩X [x]Br �= ∅, upper approximation,

BndNr(B)(X) Nr(B)∗X\Nr(B)∗X = {x ∈ Nr(B)∗X | x /∈ Nr(B)∗X}.

The original generalized approximation space (GAS) model [44] has re-
cently been extended as a result of recent work on nearness of objects (see,
e.g., [12, 11, 23, 24, 28, 29, 45, 43]). A nearness approximation space (NAS)
is a tuple

NAS = (O,F ,∼Br , Nr, νNr),

where the approximation space NAS is defined with a set of perceived objects
O, set of probe functions F representing object features, indiscernibility rela-
tion ∼Br defined relative to Br ⊆ B ⊆ F , collection of partitions (families of
neighbourhoods) Nr(B), and neighborhood overlap function νNr . The relation
∼Br is the usual indiscernibility relation from rough set theory restricted to a
subset Br ⊆ B. The subscript r denotes the cardinality of the restricted subset
Br, where we consider

(|B|
r

)
, i.e., |B| functions φi ∈ F taken r at a time to

define the relation ∼Br . This relation defines a partition of O into non-empty,
pairwise disjoint subsets that are equivalence classes denoted by [x]Br

, where

[x]Br
= {x′ ∈ O | x ∼Br x′} .
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These classes form a new set called the quotient set O/ ∼Br , where

O/ ∼Br=
{

[x]Br
| x ∈ O}

.

In effect, each choice of probe functions Br defines a partition ξO,Br on a set
of objects O, namely,

ξO,Br = O/ ∼Br .

Every choice of the set Br leads to a new partition of O. Let F denote a
set of features for objects in a set X, where each φi ∈ F that maps X to some
value set Vφi

(range of φi). The value of φi(x) is a measurement associated
with a feature of an object x ∈ X. The overlap function νNr is defined by

νNr : P(O)×P(O) −→ [0, 1],

where P(O) is the powerset of O. The overlap function νNr maps a pair of
sets to a number in [0, 1] representing the degree of overlap between sets of
objects with features defined by probe functions Br ⊆ B[46]. For each subset
Br ⊆ B of probe functions, define the binary relation ∼Br = {(x, x′) ∈ O×O :
∀φi ∈ Br, φi(x) = φi(x

′)}. Since each ∼Br is, in fact, the usual indiscernibility
relation [21], for Br ⊆ B and x ∈ O, let [x]B denote the equivalence class
containing x, i.e.,

[x]Br = {x′ ∈ O | ∀f ∈ Br, f(x′) = f(x)}.
If (x, x′) ∈ ∼Br (also written x ∼Br x′), then x and x′ are said to be B-
indiscernible with respect to all feature probe functions in Br. Then define a
collection of partitions Nr(B) (families of neighborhoods), where

Nr(B) = {ξO,Br | Br ⊆ B} .
Families of neighborhoods are constructed for each combination of probe func-
tions in B using

(|B|
r

)
, i.e., |B| probe functions taken r at a time.

The family of neighbourhoods Nr(B) contains a set of percepts. A percept
is a byproduct of perception, i.e., something that has been observed [15]. For
example, a class in Nr(B) represents what has been perceived about objects be-
longing to neighbourhoods, i.e., observed objects with matching probe function
values.

Theorem 5.1 Families of Neighbourhoods Theorem
A collection of partitions (families of neighbourhoods) Nr(B) is a near set.

Proof 5.1.1 Given a collection of partitions (families of neighbourhoods)
Nr(B). A partition ξO,Br ∈ Nr(B) consists of classes [x]Br . From Theo-
rem 3.11, classes are near sets. Hence, from Theorem 3.16, ξO,Br is a near
set. Hence, Nr(B) is a near set. �
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A sample X ⊆ O can be approximated relative B ⊆ F by constructing a
collection of partitions Nr(B)-lower approximation Nr(B)∗X, where

Nr(B)∗X =
⋃

x:[x]Br⊆X

[x]Br ,

and a collection of partitions Nr(B)-upper approximation Nr(B)∗X, where

Nr(B)∗X =
⋃

x:[x]Br∩X �=∅
[x]Br .

Theorem 5.2 A lower approximation Nr(B)∗X of a set X is a near set.

Proof 5.2.1 Given a lower approximation Nr(B)∗X of a set X. By defi-
nition, Nr(B)∗X ⊆ X and Nr(B)∗X consists of classes that are subsets of X.
Nr(B)∗X consists of classes [x]Br . From Theorem 3.11, classes are near sets.
Hence, from Theorem 3.16, Nr(B)∗X is a near set. �

Theorem 5.3 An upper approximation Nr(B)∗X of a set X is a near set.

Then Nr(B)∗X ⊆ Nr(B)∗X and the boundary region BndNr(B)(X) between
upper and lower approximations of a set X is defined using set difference, i.e.,

BndNr(B)(X) = Nr(B)∗X\Nr(B)∗X = {x ∈ Nr(B)∗X | x /∈ Nr(B)∗X}.

Observation 5.4 Near Set with an Empty Boundary
It should also be observed that whenever BndNr(B)(X) = ∅, this means that∣∣BndNr(B)(X)

∣∣ = 0, Nr(B)∗X = Nr(B)∗X and Nr(B)∗X ⊆ X. From this, we
know that Nr(B)∗X and X share objects that have matching descriptions, i.e.,
objects in each class in Nr(B)∗X are also objects contained in X. Recall from
Theorem 3.11, also, that every class is a near set. By definition, all classes
in Nr(B)∗X are also subsets of X. Then it follows that X is a near set (see
Theorem 5.5, case 2).

Theorem 5.5 Neighbourhoods Approximation Boundary
A set X with an approximation boundary

∣∣BndNr(B)(X)
∣∣ ≥ 0 is a near set.

Proof 5.5.1 The proof is similar to the one given for Theorem 4.8. There
are two cases to consider.

1.
∣∣BndNr(B)(X)

∣∣ > 0. Given an approximation boundary
∣∣BndNr(B)(X)

∣∣ >
0 for a set X. Then Nr(B)∗X ⊂ Nr(B)∗X, i.e., the lower approximation
Nr(B)∗X is a non-empty subset of the upper approximation Nr(B)∗X
and Nr(B)∗X is also a subset of X. Hence, from Theorem 4.8, X is a
near set.
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2.
∣∣BndNr(B)(X)

∣∣ = 0. Given
∣∣BndNr(B)(X)

∣∣ = 0 for a set X. Then
Nr(B)∗X = Nr(B)∗X and Nr(B)∗X is also a subset of X. Also from
Obs. 5.4 and Theorem 3.16, X is a near set.

�

From Theorem 5.5, set X is termed a near set relative to a chosen collection of
partitions Nr(B) iff |BndNr(B)(X)| ≥ 0. In the case where

∣∣BndNr(B)(X)
∣∣ > 0,

the set X has been roughly approximated, i.e., X is a rough set as well as a
near set. In the case where

∣∣BndNr(B)(X)
∣∣ = 0, the set X is considered a near

set but not a rough set. In effect, every rough set is a near set but not every
near set is a rough set.

5.1 Sample Families of Neighbourhoods

Let X ⊆ O, B ⊆ F denote a set of sample objects {x0, x1, . . . , x7} and
set of functions {s, a, p, r}, respectively. Sample values of the state function
s : X −→ {0, 1} and action function a : X −→ {1, 2, 3} are shown in Table 2.
Assume reward function r : A −→ [0, 1] and a preference function p : S×A −→
[0, 1]. From Table 2, we can, for example, extract the family of neighbourhoods
N1(B) for r = 1.

X = {x0, x1, . . . , x7} ,
N1(B) =

{
ξ{s}, ξ{a}, ξ{p}, ξ{r}

}
, where

ξ{s} =
{

[x0]{s} , [x2]{s}
}

,

ξ{a} =
{

[x0]{a} , [x1]{a} , [x3]{a}
}

,

ξ{p} =
{

[x0]{p} , [x2]{p} , [x5]{p} , [x6]{p}
}

,

ξ{r} =
{

[x0]{r} , [x2]{r}
}

.

5.2 Feature Selection Method

A practical outcome of the family of neighbourhoods near set approach is
a feature selection method. Recall that each partition ξO,Br ∈ Nr(B) con-
tains classes defined by the relation ∼Br . We are interested in the classes in
each ξO,Br ∈ Nr(B) with information content greater than or equal to some
threshold th. The basic idea here is to identify probe functions that lead to
partitions with the highest information content, which occurs in partitions
with high numbers of classes. In effect, as the number of classes in a partition
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Algorithm 1: Partition Selection

Input : NAS = (O,F ,∼Br , Nr, νNr), B ∈ F , choice r.
Output: Partition size list Φ, where Φ [i] = number of classes in

partition ξO,Br ∈ Nr(B).
Initialize i = 0;
while (i ≤ |Nr(B)|) do

Select ith partition ξO,Br ∈ Nr(B);
Φ [i] = |ξO,Br ∈ Nr(B)|;
i = i + 1;

end

increases, there is a corresponding increase in the information content of the
partition. A list Φ of partition sizes is constructed using Alg. 1.

By sorting Φ based on information content using Alg. 2, we have a means
of means of selecting tuples containing probe functions that define partitions
having the highest information content. To achieve feature selection with poly-
nomial time complexity, features are selected by considering only the partitions
in N1(B) (see [30] for details).

Algorithm 2: Feature Selection

Input : Array Φ, where Φ [i] = number of classes in ξO,Br ∈ Nr(B),
threshold th.

Output: Ordered list Γ, where Γ [i] is a winning probe function.
Initialize i = 0;
Sort Φ in descending order based on the information content of
ξO,Br ∈ Nr(B);
while (i ≥ th) do

Γ [i] = Φ [i];
i = i + 1;

end

5.3 Overlap Function

It is now possible to formulate a basis for measuring average the degree of
overlap between between near sets. Let X, Y defined in terms of a family of
neighbourhoods Nr(B). There are two forms of the overlap function.

νNr(B) (X, Y ) =

{
|X∩Y |
|Y | , if |Y | �= ∅,

1, otherwise.
(5)
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νNr(B) (X, Y ) =

{
|X∩Y |
|X| , if |X | �= ∅,

1, otherwise.
(6)

Coverage νNr(B) (X, Y ) in (5) is used in cases where it is known that |X | ≤
|Y | (see, e.g., [36, 37]). For example, coverage can be used to measure the
degree that a class [x]Br

is covered by the lower approximation Nr(B)∗X in

νNr(B)([x]Br
, Nr(B)∗X) =

| [x]Br
∩Nr(B)∗X|

|Nr(B)∗X| ,

called lower rough coverage [37]).

6 Conclusion

This article introduces a general theory of nearness of objects in a near set
approach to set approximation. Near sets represent a generalization of the
approach to the classification of objects introduced by Zdzis�law Pawlak dur-
ing the early 1980s. Near sets and rough sets are very much like two sides
of the same coin. From a rough set point-of-view, the focus is on the ap-
proximation of sets with non-empty boundaries. By contrast, in a near set
approach to set approximation, the focus is on the discovery of near sets in
the case where there is either a non-empty or an empty approximation bound-
ary. There are a number of practical outcomes of the near set approach, e.g.,
feature selection [30], object recognition in images [11, 24], image process-
ing [3], granular computing [25, 42] and in various forms of machine learn-
ing [14, 25, 31, 32, 35, 34, 37, 38]. Future work will focus on the near set
approach in pattern recognition and image processing.
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