ERRATA

1. Page 80, Section 6.4, Exercise 11 (ii) and (iii):

(ii) "A sphere with a thick wall" will not do, for it is not circle-connected (knot and unknot!). A sphere is a good example: it is not sphere-connected, as there is no 'spherical path' between the identity and the antipodal homeomorphism.
(iii) Since any embedding from the sphere into the thick torus is not spherical-path-connected to the composition of the antipodal mapping and that embedding, the thick torus is not sphere-connected. At the moment I don't see a simple space that will justify (iii).
2. (Error noticed by Ryan Sherbo) Page 88, Section 7.2, Exercise 7 (b): the claim is false and the offered solution is nonsense (there is no symmetry between the spaces X and Y). Here is a counterexample: $X=[0,1]=Y, X$ equipped with the usual topology, Y with the discrete topology, $f: X \rightarrow Y$ is the identity.
3. Page 105, Section 8.3, Exercise 5 (a): Missing: a proof that a subspace of a perfectly normal space is normal.

