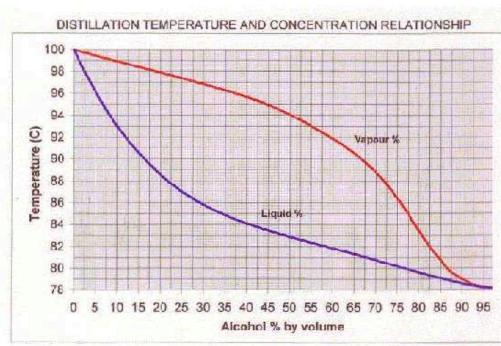
UNIVERSITY OF MANITOBA DEPARTMENT OF CHEMISTRY

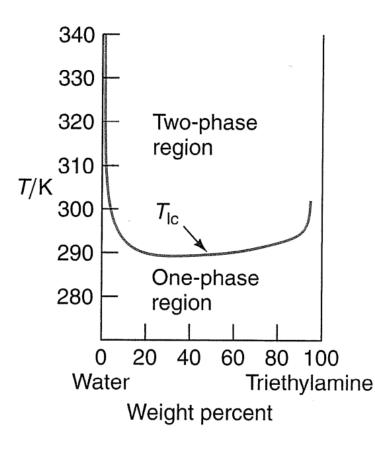
Chemistry 2290, Winter 2012, G. Schreckenbach

PROBLEM SET 4, March 16, 2012


Due date: The solved problem set is due on Friday, March 23, 2012, at the time of the lecture. **Questions to be marked:** A preselected set of four out of the five questions will be marked. (*As usual, I will make the selection.*)

1. Benzene and toluene form solutions that are nearly ideal (i.e. an ideal solution can be assumed.) At 300K, the vapor pressures of the pure liquids are p^0 (benzene) = 9.657kPa and p^0 (toluene) = 3.572kPa, respectively. Given this data, compute the vapor pressure of a solution containing $x_t = 0.750$ mol fraction of toluene. What is the mole fraction of toluene in the vapor over this liquid? [Comment: This is effectively question LM43 as posted.]

2. Find the melting point of ice at 200.0 atm. Use the following numerical values: For 1.00g of ice, $\Delta H_{fus} = 79.9$ cal.


 $\rho(\text{ice}) = 0.917 \text{ g cm}^{-3} (\text{at } 0.0^{\circ}\text{C})$ $\rho(\text{water}) = 1.000 \text{ g cm}^{-3} (\text{at } 0.0^{\circ}\text{C})$

3. Using the following water-ethanol (alcohol) phase diagram, answer the following question: (Source of figure: *http://www.physics.rutgers.edu/ugrad/351/; accessed 03/2005.*)

Starting with a 5.0% ethanol by volume solution (a typical value for beer or cider), what is the minimum number of steps

number of steps required in a fractional distillation to reach a solution that contains at least 90.0% (by volume) of ethanol? (Note the azeotrope concentration of 95.6% alcohol: This is the limit that can be reached by distillation of a less-alcohol-rich *mixture.*)

4. (a) From the phase diagram to the left (water-triethylamine), determine the ratio of the masses of the phases present at 295K, for a mixture containing 30.0 wt % triethylamine. (b) What are the respective compositions of the phases? (*Figure copied from Laidler, Meiser, Sanctuary, Physical Chemistry, 4th edition.*)

5. Calculate the boiling point of water at 98.7kPa (*a typical barometric pressure at 275m altitude*)? *You may need some or all of the following information:* At standard conditions (373.15K; 1.00 atm), the heat of vaporization is 2258Jg⁻¹ (that's Joule per gram); the molar volume of liquid water is 18.78 cm³ mol⁻¹, and the molar volume of water vapor is 30.199 dm³ mol⁻¹. The molar mass of water is 18.015 g mol⁻¹.

Comment: This question has been taken from the 2011 midterm 2.