
MATH 1210 Supplementary Notes:
Some Geometrical Considerations in in Two- and

Three-Dimensions

T. G. Berry and M. Davidson

Department of Mathematics, University of Manitoba

1 Cartesian Coordinates in Two- and Three-Dimensions

To define a two-dimensional Cartesian coordinate system:

(a) Choose two mutually perpendicular lines.
Each of these two lines is said to be a coordinate axis, and together are known as the
coordinates axes. The point of intersection of these two lines is known as the origin of
the coordinate system, and is usually labeled O.
The orientation of these two lines may be arbitrarily chosen, subject to the restriction
that they must be mutually perpendicular. In most instances, one of them is chosen to
be horizontal, with the other therefore being vertical. Typically the horizontal axis is
known as the x-axis and the vertical axis is known as the y-axis, as shown below.

O x

y

P (x, y)

OP

!

(b) Along each coordinate axis choose a unit of measurement as measured from
the origin, and a direction (known as the“positive” direction for that axis) in
which to measure this unit for that axis.

1



These units of measurement along the coordinate axes need not be the same, but are
often chosen to be so.

(c) Define the coordinates (x, y) of any point P in the plane spanned by the two
coordinate axes as follows: the x-coordinate is defined a the directed length of
the projection of the line segment OP onto the x-axis, while the y-coordinate repre-
sents the directed length of the (perpendicular or orthogonal) projection of
the line segment OP onto the y-axis.

In each case, the directed distance is positive if it is measured in the same direction as
the for that axis and negative if in the opposite direction.

Remark 1.1. The coordinate axes subdivide the plane into four quadrants, depending on
the signs of x and y, as follows:

(i) first quadrant: both x and y are positive,

(ii) second quadrant: x < 0 and y > 0,

(iii) third quadrant: x < 0 and y < 0,

(iv) fourth quadrant x > 0 and y < 0.

Remark 1.2. The origin has coordinates (0, 0), while any point on the x-axis has coordi-
nates (x, 0) and any point on the y-axis has coordinates (0, y).

Remark 1.3. We note that the length of the line segment OP is given by the simple equation

|OP | =
√
x2 + y2, (1.1)

which is effectively a restatement of the Pythagorean Theorem.
More generally, if P1(x1, y1) and P2(x2, y2) are any two points in the plane, the length of the
line segment P1P2 is given by

|P1P2| =
√

(x2 − x1)2 + (y2 − y1)2. (1.2)

Remark 1.4. The 2-dimensional plane endowed with Cartesian coordinates (x, y) is known
as the 2-dimensional Euclidean Plane and is denoted by E2.
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To define a three-dimensional Cartesian coordinate system, we follow a similar pro-
cedure but begin with three mutually perpendicular coordinate axes, which intersect
at a common origin, choosing a unit of measurement and positive direction along each.
Typically these axes are referred to as the x-axis, y-axis, and z-axis respectively. In this case
the coordinates (x, y, z) of any point P in the three-dimensional space spanned by these
three coordinate axes, are defined once again as the directed length of the projection of
the line segment OP onto the corresponding coordinate axis, subject to the convention
that this directed distance is positive if measured in the same direction as the corresponding
unit, and negative if measured in the opposite direction.

O

x

y

z

P (x, y, z)

OP

!

Remark 1.5. In 3-dimensions the length of the line segment OP is given by

|OP | =
√
x2 + y2 + z2. (1.3)

More generally, if P1(x1, y1, z1) and P2(x2, y2, z2) are any two points in space, the length of
the line segment P1P2 is given by

|P1P2| =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (1.4)

Remark 1.6. Three-dimensional space endowed with Cartesian coordinates (x, y, z) is known
as Euclidean 3-dimensional space and is denoted by E3.
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2 Vectors in E2 and E3

A vector is a geometric object which has both magnitude and direction. Geometrically,
a vector is represented as a directed line segment ( or“arrow”). Typically a vector is specified
through the use two points P and Q, with an assigned direction from the “initial point”
(also called the “point of application” or “point of attachment” of the vector), to

the “final point” . For example , a two-dimensional vector
−→
PQ (lying in the plane of this

page) may be represented as

��
��*

“initial point” P

Q “final point”

In order to turn a two-dimensional geometric vector into an algebraic vector , we now su-
perimpose a two-dimensional Cartesian coordinate system onto this plane, as in:

−→
PQ

P (x1, y1)

Q(x2, y2)

x2 − x1

y2 − y1

x

y

O

!

!

!

!

!

!

!

!

!

!In addition, if the coordinates of P are (x1, y1) and the coordinates of Q are (x2, y2), the
quantities (x2 − x1) and (y2 − y1) respectively represent the directed lengths of the pro-

jection of the vector
−→
PQ onto the x-axis and y-axis respectively.

These quantities are known respectively as the “x-component” and “y-component” of the

vector
−→
PQ, and we write

−→
PQ in terms of its components as

−→
PQ = [(x2 − x1), (y2 − y1)] (2.1)

= (x2 − x1)̂i+ (y2 − y1)ĵ (2.2)
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in which

î = [1, 0] represents the “unit vector in the x-direction”
and
ĵ = [0, 1] represents the “unit vector in the y-direction”.

Remark 2.1. The pair of vectors î and ĵ are said to the “unit basis vectors” for the Carte-
sian coordinate system E2.

Remark 2.2. In the above we have introduced two alternate notations for a vector, namely

(i) in terms of its components, viz., [(x2 − x1), (y2 − y1)],

in which square brackets are used to distinguish the vector from a point,

(ii) in terms of its components and the “unit basis vectors”, viz., (x2 − x1)̂i+ (y2 − y1)ĵ.

Remark 2.3. Although either of the above notations for a vector is acceptable, the second
is preferred as it does not permit the possibility of confusion as to whether we
are considering a vector or a point (in spite of the caution at the end of the first part
of the above remark) .

Remark 2.4. The length (also known as the “norm”) of the vector
−→
PQ, denoted by ‖

−→
PQ‖

is simply the length of the line segment PQ, i.e.,

‖
−→
PQ‖ = |PQ| =

√
(x2 − x1)2 + (y2 − y1)2 (2.3)
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Vectors in space (also known as three-dimensional vectors) are similar (again be-
ing determined by two points), although they have three components. Indeed the x- , y-
and z-components of a 3-d vector are determined in a completely analogous fashion to that
introduced above, as illustrated in the following diagram:

!

−→
AB

A(x1, y1, z1)

B(x2, y2, z2)

x2 − x1

y2 − y1

z2 − z1

x

y

z

O

Remark 2.5. By analogy with the preceding case, a 3-d vector
−→
AB may be written in either

of the following two forms:

−→
AB = [(x2 − x1), (y2 − y1), (z2 − z1)] (2.4)

= (x2 − x1)̂i+ (y2 − y1)ĵ + (z2 − z1)k̂ (2.5)

in which

î = [1, 0, 0] represents the “unit (basis)vector in the x-direction”,
ĵ = [0, 1, 0] represents the “unit (basis) vector in the y-direction”
and
k̂ = [0, 0, 1] represents the “unit (basis)vector in the z-direction”,

and (x1, y1, z1) and (x2, y2, z2) respectively denote the coordinates of the two points A and B.

Remark 2.6. The “norm” of the 3-d vector
−→
AB, denoted by ‖

−→
AB‖ is again simply the

length of the line segment AB, i.e.,

‖
−→
AB‖ = |AB| =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (2.6)
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3 Algebraic Operations on Vectors in E2 and E3

Throughout this section we will assume that all vectors are either two- or three-dimensional,
but for expediency will work only with the three-dimensional case. The case of
2-d vectors may be easily extracted by assuming that the third component is always ‘zero’.
All results are valid in both cases, with the exception of the “vector product”
(or “cross product”) of two vectors, which is only meaningful when the two
vectors are 3-dimensional.

The Zero Vector

Any vector having no magnitude is said to be a zero vector. Of course, there are many
zero vectors, but they all share a common property, namely, all of their components (in any
number of dimensions) are “zero”. In this sense the “zero vector” is unique, and is there-

fore denoted by
−→
0 independent of the dimensionality of the space; however, it is implicitly

assumed that in a given context the number of components of the zero vector is consistent
with the dimensionality of the space in which we are currently working.

Equality of Vectors

Two vectors are said to be equal if they have the same magniutude and direction.
Clearly, two vectors are equal if and only if their corresponding components are the same,
i.e., if −→u = u1î+ u2ĵ + u3k̂ and −→v = v1î+ v2ĵ + v3k̂, then

−→u = −→v ⇐⇒ (u1 = v1 and u2 = v2 and u3 = v3). (3.1)

Remark 3.1. Since the point of application of the vectors is not mentioned in the above
definition, we may effectively move a vector from one point to another preserving its funda-
mental geometric properties of length and direction. Even though the vector has been moved
to another point, it is regarded as being the same vector. This operation is known as the
“Euclidean notion of parallelism”, and we emphasize that it preserves both the length and
direction of a given vector.
As a consequence, if −→v = v1î + v2ĵ + v3k̂ is a vector attached to a point P with
coordinates (x0, y0, z0) then we may also identify −→v as being the vector attached

to O having the point (v1, v2, v3) as its final point, i.e., −→v =
−−−−−−−−→
O(v1, v2, v3).

Scalar Multiplication of a Vector

Suppose that λ is a given real number and that −→u = u1î+ u2ĵ + u3k̂ is a given vector. The
vector obtained by scalar multiplication of −→u by λ, denoted by λ−→u , is the vector obtained by
“scaling” −→u by the factor λ, where the “scaling” involves expansion if |λ| > 1 , contraction
if 0 < |λ| < 1 , together with a reversal of direction in the case when λ < 0. We illustrate
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this concept in the following diagram:
!

@
@

@R

point of application

−→u

2−→u

(−1)−→u

(−3)−→u

Remark 3.2. In terms of components, scalar multiplication of −→u by λ may be written as

λ−→u = (λu1)̂i+ (λu2)ĵ + (λu3)k̂ (3.2)

Remark 3.3. Multiplication of a vector −→u by the scalar (−1) results in a vector denoted by
−−→u , which is simply the “reversal” (or negative) of −→u .

Remark 3.4. Two or more vectors that are simply scalar multiples of one another are said
to be parallel.

Addition of Vectors

Two vectors may be added together, using the so-called “parallelogram law ”, by moving
one vector so that its initial point coincides with the final point of the other vector. Graph-
ically, the sum of the given vectors −→u = u1î+ u2ĵ + u3k̂ and −→v = v1î+ v2ĵ + v3k̂, denoted
by −→u + −→v , is the diagonal in the parallelogram having −→u and −→v as its edges, as shown
below:

!

−→u

−→u +−→v

−→u
−→v

−→v
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Remark 3.5. It is clear from the above diagram that −→u +−→v and −→v +−→u represent the same
vector, and hence we may write

−→u +−→v = −→v +−→u .

Remark 3.6. In terms of components, vector addition involves simply the addition of cor-
responding vector components, as in

−→u +−→v = (u1î+ u2ĵ + u3k̂) + (v1î+ v2ĵ + v3k̂) (3.3)

= (u1 + v1)̂i+ (u2 + v2)ĵ + (u3 + v3)k̂. (3.4)

The Difference of Two Vectors (also known as ”Vector Subtraction”)

The difference of two vectors −→u = u1î + u2ĵ + u3k̂ and −→v = v1î + v2ĵ + v3k̂ is constructed
by using two vector operations, namely, scalar multiplication and vector addition as in

−→u −−→v = −→u + (−1)−→v (3.5)

Graphically, this operation may depicted, again by the parallelogram law, being careful to
use −→u and −−→v as the edges of the parallelogram, as shown below:

!

−−→v −→u −−→v

−→v

−→u

−→u
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Remark 3.7. Unlike the case of vector addition, the difference of vectors is very crucially
dependent on the order of the vectors,

i.e., −→u −−→v and −→v −−→u are NOT THE SAME, although it is easily shown that

−→u −−→v = −(−→v −−→u ) .

You may easily verify this by inserting the vector −−→u on the above diagram and completing
the appropriate parallelogram to determine the vector −→v −−→u .

Remark 3.8. In terms of components, the difference of two vectors involves simply the
difference of their respective components taken in the correct order:

−→u −−→v = (u1î+ u2ĵ + u3k̂)− (v1î+ v2ĵ + v3k̂) (3.6)

= (u1 − v1)̂i+ (u2 − v2)ĵ + (u3 − v3)k̂. (3.7)

Two Other Useful Operations on A Pair of Vectors

In addition to the above arithmetic operations on vectors, there are two additional ways
in which two vectors may be combined, namely, through the dot product and the cross
product :

The Dot Product of Two Vectors

Again suppose that −→u = u1î + u2ĵ + u3k̂ and −→v = v1î + v2ĵ + v3k̂ are two given vectors
and θ denotes the angle between them. The dot product of −→u and −→v , denoted −→u · −→v , is
defined by

−→u · −→v = ‖−→u ‖‖−→v ‖cos(θ). (3.8)

Remark 3.9. Provided that −→u 6= −→0 and −→v 6= −→0 , −→u · −→v = 0 ⇐⇒ cos(θ) = 0

⇐⇒ −→v and −→v are perpendicular.

Remark 3.10. The concept of perpendicularity mentioned in the previous remark is only
useful in 2- and 3-dimensions. Although, for the purposes of this discussion, we shall restrict
consideration only to E2 and E3, it is worthwhile mentioning that in higher dimensional
spaces two vectors which satisfy the condition −→u · −→v = 0 are said to be “orthogonal”.
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Although (3.8) provides a convenient geometrical interpretation of the dot product of two
vectors, this formula is not very convenient to use in the case when the vectors are expressed
in terms of their components.

To derive a corresponding formula in terms of the components of the given vectors, we
suppose that these vectors are positionnned at the origin (although for convenience sake the

axes have been omitted from the diagram) and that
−→
PQ denotes the vector (v1−u1)̂i+(v2−

u2)ĵ + (v3 − u3)k̂, as shown in the following diagram:
!

−→
PQ−→v

−→uθ

By virtue of the cosine law, we may write

‖
−→
PQ‖2 = ‖−→u ‖2 + ‖−→v ‖2 − 2‖−→u ‖‖−→v ‖cos(θ). (3.9)

But
−→
PQ = −→v −−→u , so that(3.6) becomes

‖−→u ‖‖−→v ‖cos(θ) =
1

2

(
‖−→u ‖2 + ‖−→v ‖2 − ‖(−→v −−→u )‖2

)
(3.10)

or equivalently
−→u · −→v =

1

2

(
‖−→u ‖2 + ‖−→v ‖2 − ‖(−→v −−→u )‖2

)
. (3.11)

Finally, we express each of the three norms appearing in the right-hand side of (3.11) in
terms of the components of the corresponding vectors, and simplify the resulting algebraic
expression to obtain the desired result, namely

−→u · −→v = u1v1 + u2v2 + u3v3. (3.12)
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Formula (3.12) provides the desired formula for the dot product of two vectors
in terms of their components.

Remark 3.11. The above result allows us to interpret the norm of a given vector as the
square root of the dot product of the vector with itself,
i.e.,

‖−→u ‖ =
√−→u · −→u ⇐⇒ ‖−→u ‖2 = −→u · −→u (3.13)

Remark 3.12. There are a number of properties of the dot product that are useful. We
state these for future reference, and recommend that you verify them for yourself:

(i) −→u · −→v = −→v · −→u

(ii) c (−→u · −→v ) = (c−→u ) · −→v = −→u · (c−→v )

(iii) −→u · (−→v +−→w ) = −→u · −→v +−→u · −→w

Cross Product of Two Vectors

Again suppose that −→u = u1î+ u2ĵ + u3k̂ and −→v = v1î+ v2ĵ + v3k̂ are two given vectors and
θ denotes the angle between them. (The significance of the angle θ will become evident at a
later time.)

The cross product of −→u and −→v , denoted −→u ×−→v , is defined by

−→u ×−→v = (u2v3 − u3v2)̂i+ (u3v1 − u1v3)ĵ + (u1v2 − u2v1)k̂. (3.14)

The cross product has some very useful properties, which we list below:

(i) if −→u , −→v and −→u ×−→v are all non-zero vectors, then−→u ×−→v is perpendicular to both −→v
and −→u , i.e.,

−→u · (−→u ×−→v ) = 0 and −→v · (−→u ×−→v ) = 0

as may easily be verified by direct computation. This is left as an exercise for you to
do.

We will exploit this property later when we wish to find a vector which is perpendicular
to two given vectors.
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(ii) The square of the norm of −→u ×−→v may be expressed entirely in terms of the norms of
the given two vectors and their dot product, by the following relation

‖−→u ×−→v ‖2 = ‖−→u ‖2‖−→v ‖2 − (−→u · −→v )2 (3.15)

which is known as Lagrange’s identity. Again this result may be easily derived by
writing the various terms in this equation in terms of the components of the vectors and
performing the appropriate algebraic simplification, and is therefore left as an exercise.

(iii) Other useful properties, which will again be left as exercises, are:

−→u ×−→v = − (−→v ×−→u )
−→u × (−→v +−→w ) = (−→u ×−→v ) + (−→u ×−→w )
(−→u +−→v )×−→w = (−→u ×−→w ) + (−→v ×−→w )

k (−→u ×−→v ) = (k−→u )×−→w = −→u × (k−→w ) , −→u ×−→u =
−→
0 ,

−→u ×−→0 =
−→
0 ×−→u =

−→
0 .

The cross product of two vectors has a very useful geometrical property related to the angle
θ between the two vectors. To derive this property, we employ Lagrange’s identity (3.15)
and (3.8) to write

‖−→u ×−→v ‖2 = ‖−→u ‖2‖−→v ‖2 − (−→u · −→v )2

= ‖−→u ‖2‖−→v ‖2 − (‖−→u ‖‖−→v ‖cos(θ))2

= ‖−→u ‖2‖−→v ‖2
(
1− cos2(θ)

)
= (‖−→u ‖‖−→v ‖sin(θ))

2
,

from which we deduce that

‖−→u ×−→v ‖ = ‖−→u ‖‖−→v ‖sin(θ) (3.16)

since 0 ≤ θ ≤ π .

Note how equation (3.16) complements equation (3.8), and displays an important
connection between the dot product and the norm of the cross product of two
given vectors.

Remark 3.13. It is an interesting exercise to confirm that the following results are valid:

î× î = ĵ × ĵ = k̂ × k̂ =
−→
0 ,

î× ĵ = −(ĵ × î) = k̂,

î× k̂ = −(k̂ × î) = −ĵ,
ĵ × k̂ = −(k̂ × ĵ) = î.
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4 Lines in E2 and E3

A line (in two- or three-dimensions) may be specified in a variety of ways, such as:

(i) by specifying two points on the line,

(ii) by specifying a point on the line and a vector at that point (which determines the
direction of the line),

(iii) by specifying two vectors, the first of which is attached to the origin (and hence
represents the position vector of its terminal point, which lies on the line) and the
second of which is attached to the terminal point of the first (and which therefore
represents the direction of the line).

Remark 4.1. Although the three descriptions given above are equivalent, the third is the
most useful as it allows us to write down equations for the given line using only the two
vector operations of scalar multiplication and vector addition introduced earlier.

Using the above representations for a line, we may easily derive equations for a line in 2- or
3-dimensional space.

For the purposes of our discussion, we will assume that we are working in three-dimensions
and make use of the standard three-dimension Cartesian Coordinate system (x, y, z). To
simplify the discussion to the case of a line in a plane, we need only suppress one dimension.

Consider the case of the line L which passes through the point P0(x0, y0, z0) (determined

by the position vector
−→
X0 =

−−→
OP0= x0î + y0ĵ + z0k̂) in the direction of the vector

−→
A=

a1î+ a2ĵ + a3k̂ at P0, as shown in following diagram.

O

x

y

z

P0(x0, y0, z0)

−→
A

−→
X0 =

−−→
OP0

point
P (x, y, z)

line L@
@
@R

!
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Using the operations of scalar multiplication of a vector and vector addition, we may write
the position vector of any arbitrary point P (x, y, z) on L as

−→
OP =

−→
X0 + t

−→
A (4.1)

or in component form

xî+ yĵ + zk̂ = x0î+ y0ĵ + z0k̂ + t(a1î+ a2ĵ + a3k̂) (4.2)

in which the scalar multiplier “t” appearing in this expression is known as a parameter along
the line L, and varies as P moves along L. In particular, if t = 0 then P coincides with

P0, while if t > 0 then P lies to the side of P0 determined by the direction vector
−→
A along

L, while if t < 0 then P lies to the side of P0 determined by the negative of the direction

vector
−→
A along L. In particular, it should be noted that length of the vector

−−→
P0P is the

absolute value of t times the length of
−→
A

i.e.,

‖
−−→
P0P‖ = |t| ‖

−→
A‖

Equation (4.2) is known as the vector parametric equation of the line L.

Often one would prefer to work with the so-called scalar parametric equations of the
line L, which may be obtained from (4.2) by decomposing this vector equation into compo-
nent form, to obtain the three scalar equations

x = x0 + a1t, y = y0 + a2t, z = z0 + a3t. (4.3)

Remark 4.2. One should note very carefully how the components of the vectors
−→
X0 and

−→
A

enter into the scalar equations (4.3). Do NOT reverse their roles; they are not interchange-
able!

Finally, we write the equations of the above line in “symmetric form” by eliminating the
parameter “t”, if possible, to obtain

x− x0

a1

=
y − y0

a2

=
z − z0

a3

(4.4)

Remark 4.3. Again, one should note very carefully how the components of the vectors
−→
X0

and
−→
A enter into the symmetric equations (4.4). Once again,they are not interchangeable!

Remark 4.4. As mentioned previously, the above development works equally well for lines
in E2 and E3. If, for example, one wishes to work with a line in the xy-plane, it is only
necessary to set z = 0 , z0 = 0 and a3 = 0 in (4.2) or (4.3) in order to get parametric
equations for the line. On the other hand, when one eliminates the parameter in this case
the resulting “symmetric equation” becomes

x− x0

a1

=
y − y0

a2

(4.5)
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which the standard equation for a line in the xy-plane through the point P0 (x0, y0) in the

direction of the 2-d vector
−→
A= a1î+ a2ĵ
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5 Planes in E3

A plane in space may be specified in a variety of ways, such as:

(i) by specifying three non-collinear points on the plane,

(ii) by specifying a point on the plane and two distinct non-parallel vectors at that point
(each of which lies in the plane),

(iii) by specifying three vectors, the first of which is attached to the origin (and hence
represents the position vector of its terminal point, which lies on the plane) and the
other two of which are distinct and non-parallel and attached to the terminal point of
the first (and which therefore each lie in the plane),

(iv) by specifying two vectors, the first of which is attached to the origin (and hence repre-
sents the position vector of its terminal point, which lies on the plane) and the second
of which is attached to the terminal point of the first (and represents a vector perpen-
dicular to the plane).

Remark 5.1. The normal vector referred to in (iv) above may be viewed as the cross product
of the two distinct non-parallel vectors lying in the plane as mentioned in (ii) or (iii) above.

By analogy with the case of a line, we may use the preceding representations for a plane in
order to determine various forms for the equation(s) of a plane. We begin with the so-called
parametric equations for a plane, which may be obtained as follows:

Consider the case of the plane P which passes through the point P0(x0, y0, z0) (determined

by the position vector
−→
X0 =

−−→
OP0= x0î + y0ĵ + z0k̂) and containing the two vectors −→u=

u1î+ u2ĵ + u3k̂ and −→v = v1î+ v2ĵ + vk̂ at P0 as shown in following diagram.

O

x

y

z

−→
N

−→u

−→v

−→
X0

plane P

!
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The position vector of any arbitrary point P (x, y, z) on P may be represented by adding

appropriate scalar multiplies of −→u and −→v to
−→
X0, as in

−→
OP =

−→
X0 + s−→u + t−→v (5.1)

or equivalently, in component form as

xî+ yĵ + zk̂ = x0î+ y0ĵ + z0k̂ + s(u1î+ u2ĵ + u3k̂) + t(v1î+ v2ĵ + v3k̂) (5.2)

in which “s” and “t” denote the appropriate scalar factors, and are known as parameters
for the plane P . The above vector equation is known as the vector parametric equation
for the plane P .

Often one would prefer to work with the so-called scalar parametric equations of the
plane P , which may be obtained from (5.2) by decomposing this vector equation into
component form, to obtain the three scalar equations

x = x0 + u1s+ v1t, y = y0 + u2s+ v2t, z = z0 + u3s+ v3t. (5.3)

An alternate representation for the plane P may be obtained by using the information in (iv)
above. Suppose that P passes through the point P0(x0, y0, z0) (determined by the position

vector
−→
X0 =

−−→
OP0= x0î+ y0ĵ + z0k̂) and is perpendicular to the specified vector

−→
N = n1î+

n2ĵ+n3k̂ at P0. If P (x, y, z) is any point on P , the vector
−−→
P0P = (x−x0)̂i+(y−y0)ĵ+(z−z0)k̂

lies in P and is therefore perpendicular to
−→
N . Thus, the equation

−→
N ·
−−→
P0P = 0

or equivalently
n1(x− x0) + n2(y − y0) + n3(z − z0) = 0 (5.4)

is the equation of the plane passing through the point P0(x0, y0, z0) with “normal vector”
−→
N = n1î+n2ĵ+n3k̂ at P0. Equation (5.4) is said to be the “point-normal equation” for
this plane.

Remark 5.2. Note very carefully the roles of the vector
−→
N = n1î+ n2ĵ + n3k̂ and the point

P0(x0, y0, z0) in equation (5.4). Equation (5.4) is often written in “standard form” as

Ax+By + Cz = D (5.5)

in which [A,B,C] =
−→
N and D =

−→
N ·
−−→
OP0.

Remark 5.3. It is a relatively simple exercise to show that if one eliminates the parameters
“s” and“t” from (5.3), these scalar parametric equations reduce to the point-normal equation
(5.4) for the plane P.
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