Exercises for MATH 1210 Supplementary Notes on Geometry

T. G. Berry and M. Davidson

Department of Mathematics, University of Manitoba

1 Cartesian Coordinates

1. On a diagram locate and identify the following points:

$$P_1(2,0), P_2(0,-4), P_3(-3,4), P_4(2,-\pi), P_5(-5,-1).$$

2. On a diagram locate and identify the following points:

$$P_1(-1,0), P_2(0,-1), P_3(3,2).$$

and verify that

$$|P_1P_3|^2 = |P_1P_2|^2 + |P_2P_3|^2.$$

What does this tell you about the triangle $P_1P_2P_3$?

3. On a diagram locate and identify the following points:

$$P_1(2,0,2), P_2(-1,3,2), P_3(1,1,0).$$

and evaluate the quantities $|P_1P_2|$, $|P_3P_1|$ and $|P_3P_2|$. What do these values tell you about the triangle $P_1P_2P_3$?

2 Vectors in and Algebraic Operations on Them

- 1. Consider the four points $P_1(1,1,0)$, $P_2(2,0,3)$, $P_3(0,2,5)$ and $P_4(-1,3,2)$ in \mathbb{E}^3 .
 - (a) Show that $\overrightarrow{P_1P_3} = \overrightarrow{P_1P_2} + \overrightarrow{P_1P_4}$. What does this tell you about the quadrilateral $P_1P_2P_3P_4$?
 - (b) Verify that the angle between $\overrightarrow{P_1P_2}$ and $\overrightarrow{P_1P_4}$ is the same as the angle between $\overrightarrow{P_3P_2}$ and $\overrightarrow{P_3P_4}$.
 - (c) Find the angle between $\overrightarrow{P_1P_2}$ and $\overrightarrow{P_3P_4}$.
- 2. If $\vec{u} = \frac{1}{\sqrt{2}} \left(\frac{1}{2}\hat{i} + \hat{j} + \frac{1}{2}\hat{k} \right)$ and $\vec{v} = \frac{1}{2\sqrt{2}} \left(\hat{i} \hat{k} \right)$, find $\vec{u} + \vec{v}$, $\vec{u} \vec{v}$ and the angle between the last two vectors.
- 3. Consider the vectors $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$ and $\overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k}$ in \mathbb{E}^3 , and let α denote the angle between them.
 - (a) Evaluate $\|\overrightarrow{a}\|, \|\overrightarrow{b}\|$ and $\overrightarrow{a} \cdot \overrightarrow{b}$ and use them to find $cos(\alpha)$.
 - (b) Find $\overrightarrow{a} \times \overrightarrow{b}$ and $\|\overrightarrow{a} \times \overrightarrow{b}\|$, and use these results, together with the results of part (a), in order to verify that

$$\|\overrightarrow{a}\times\overrightarrow{b}\| = \|\overrightarrow{a}\|\|\overrightarrow{b}\|sin(\alpha).$$

- 4. Simplify the expression $\left[\left(\left[\hat{i} \times \hat{j}\right] \times \hat{j}\right) \times \hat{j}\right] \cdot \left(\hat{i} + 2\hat{j} + 7\hat{k}\right)$.
- 5. You are given the vector $\vec{r} = 2\hat{i} + 3\hat{j} + \sqrt{3}\hat{k}$.
 - (a) Find a vector of **unit length** that points in the same direction as \overrightarrow{r} . This vector is known as **the unit vector in the direction of** \overrightarrow{r} , and is typically denoted by \hat{r} .
 - (b) Use the vector of part (a) to find a vector of length 2 in the direction of \overrightarrow{r} .
 - (c) Use the vector of part (a) to find a vector of length -3 in the direction of \overrightarrow{r} .

- 6. Throughout this exercise, suppose that P and Q are **any** two points in \mathbb{E}^3 , other than O. Let $\overrightarrow{p} = \overrightarrow{OP}$ and $\overrightarrow{q} = \overrightarrow{OQ}$.
 - (a) Use the definitions of scalar multiplication and vector addition to verify that $\overrightarrow{p} \overrightarrow{q} = \overrightarrow{QP}$.
 - (b) Find a vector from O to the mid-point M of the line segment PQ, and express $\overrightarrow{m} = \overrightarrow{OM}$ as a combination of \overrightarrow{p} and \overrightarrow{q} .
 - (c) Let T be the point on the line segment PQ determined by the condition that $|PT| = \frac{1}{3}|PQ|$. Find the vector \overrightarrow{OT} .
 - (d) In \mathbb{E}^3 , describe the figure consisting of all vectors \overrightarrow{x} at O satisfying the condition that $\|\overrightarrow{x} \overrightarrow{p}\| = 2$.
 - (e) Let P_1 and Q_1 be the midpoints of the line segments OP and OQ respectively. Show that $\overrightarrow{Q_1P_1}$ is parallel to and half the length of \overrightarrow{QP}
- 7. Consider a cube in \mathbb{E}^3 .

Find the angle between a diagonal and any of the adjacent edges of the cube.

8. Consider a rectangular parallelopiped (i.e., a rectangular box) in \mathbb{E}^3 , whose sides are of length a, b and c metres respectively.

Find the angle between a diagonal and each of the three adjacent edges.

3 Lines and Planes

- 1. At $P_0(1, 2, -3)$ in \mathbb{E}^3 , let $\vec{u} = -2\hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{v} = \hat{i} 3\hat{j} + 4\hat{k}$.
 - (a) Find the scalar parametric equations of the line L through P_0 in the direction of the vector $\overrightarrow{u} \times \overrightarrow{v}$.
 - (b) Find the coordinates of the point P^* on L which lies a distance of $2 \| \vec{u} \times \vec{v} \|$ from P_0 , to the side of P_0 determined by $\vec{u} \times \vec{v}$.
 - (c) Find the symmetric equations of the line L.
- 2. Consider the plane \mathcal{P} passing through $P_0(1, 2, -3)$ with normal vector $\overrightarrow{u} \times \overrightarrow{v}$, where $\overrightarrow{u} = -2\hat{i} + 2\hat{j} + 3\hat{k}$ and $\overrightarrow{v} = \hat{i} 3\hat{j} + 4\hat{k}$, as in the previous exercise.
 - (a) Find the equation of the plane \mathcal{P} in point-normal form.
 - (b) Find the coordinates of the point P^* on \mathcal{P} which is obtained by adding $-2\overrightarrow{u}$ and $+3\overrightarrow{v}$ to $\overrightarrow{X_0} = \overrightarrow{OP_0}$.
 - (c) Verify that P^* lies on \mathcal{P} .
- 3. Find all points of intersection of the following lines and/or planes in \mathbb{E}^3 and, in each case, explain the geometrical significance of your answer(s):
 - (a) Two planes, namely, \mathcal{P}_1 : x + y 2z = 3 and \mathcal{P}_2 : 3x + 4y + z = 5,
 - (b) Two planes, namely, \mathcal{P}_1 : x + y 2z = 3 and \mathcal{P}_3 : 3x + 3y 6z = 5,
 - (c) A plane \mathcal{P}_1 : x + y 2z = 3 and a line L_1 : x = 4 2t, y = -3 t, z = 4 + t (with parameter "t"),
 - (d) Two lines, namely, L_1 : x = 4 2t, y = -3 t, z = 4 + t (with parameter "t") and L_2 : x = 2 + s, y = -4 + 2s, z = 5 - s (with parameter "s")
 - (e) Two lines, namely, L_1 : x = 4 2t, y = -3 t, z = 4 + t (with parameter "t") and L_3 : x = 6 - 2s, y = -1 + s, z = 5 - s (with parameter "s")
 - (f) Two lines, namely, L_1 : x = 4 2t, y = -3 t, z = 4 + t (with parameter "t") and L_4 : x = 6 - 2s, y = -1 - s, z = 3 + s (with parameter "s")