1:30 p.m., 2007 4 14	Final Examination
Course MATH 1210	Time 2 hours
Examination Techniques of Classical and Linear Algebra	Examiner R. S. D. Thomas
Question Number 1	Value 10 out of 65
(a) $S_n \equiv \sum_{r=1}^{3n} r^2 = n(3n+1)(6n+1)/2$ (b) Part (a) is not required, but as usual the precise summation makes $(3n+1)^2 + (3n+2)^2 + (3n+3)^2$.	it easier to see that $S_{n+1} = S_n +$
Question Number 2	Value 10 out of 65
Linearly independent.	
Question Number 3	Value 10 out of 65
There are no solutions because the equations are inconsistent.	
Question Number 4	Value 15 out of 65
The eigenvalues and corresponding eigenvectors are	

$$\left(1, \begin{bmatrix} -1\\ -1\\ 1 \end{bmatrix}\right), \left(2, \begin{bmatrix} 2\\ 1\\ 0 \end{bmatrix}\right).$$

Question Number 5

(a)

$$A^{-1} = \frac{1}{14} \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}.$$

(b)

$$x = \frac{a+2b-c}{14}; y = \frac{-a+b+2c}{14}; z = \frac{2a-b+c}{14}.$$

Question Number 6

 $-1,\pm 2,\pm 2i.$

* * * * *

Value 10 out of 65

Value 10 out of 65