(a) $S_{n} \equiv \sum_{r=1}^{3 n} r^{2}=n(3 n+1)(6 n+1) / 2$
(b) Part (a) is not required, but as usual the precise summation makes it easier to see that $S_{n+1}=S_{n}+$ $(3 n+1)^{2}+(3 n+2)^{2}+(3 n+3)^{2}$.
Question Number 2
Value 10 out of 65
Linearly independent.
Question Number 3
Value 10 out of 65
There are no solutions because the equations are inconsistent.
Question Number 4
The eigenvalues and corresponding eigenvectors are

$$
\left(1,\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]\right),\left(2,\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]\right)
$$

Question Number 5
(a)

$$
A^{-1}=\frac{1}{14}\left[\begin{array}{ccc}
1 & 2 & -1 \\
-1 & 1 & 2 \\
2 & -1 & 1
\end{array}\right]
$$

(b)

$$
x=\frac{a+2 b-c}{14} ; y=\frac{-a+b+2 c}{14} ; z=\frac{2 a-b+c}{14} .
$$

Question Number 6

