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1. (a)[9] Prove the following, using induction, for all n ≥ 1:

2 + 5 + 8 + · · ·+ (3n− 1) =
n(3n+ 1)

2

Solution:

Let Pn be the statement 2 + 5 + 8 + · · ·+ (3n− 1) = n(3n+1)
2

.

If n = 1 :
2 + 5 + 8 + · · ·+ (3n− 1) = 2

and n(3n+1)
2

= 4
2

= 2
So P1 is true.

Assume that Pk is true.

Then 2 + 5 + 8 + · · ·+ (3k − 1) =
k(3k + 1)

2
.

Now

2 + 5 + 8 + · · ·+ (3(k + 1)− 1) = 2 + 5 + 8 + · · ·+ (3k − 1) + (3k + 2)

=
k(3k + 1)

2
+ (3k + 2)

=
3k2 + k + 6k + 4

2

=
3k2 + 7k + 4

2

=
(k + 1)(3k + 4)

2

=
(k + 1)(3(k + 1) + 1)

2

Hence if Pk is true then Pk+1 is also true.

Since P1 is true and Pk implies Pk+1, by PMI, Pn is true for all n ≥ 1.

(b)[2] Write 2 + 5 + 8 + · · ·+ (3n− 1) in sigma notation.

Solution:

n∑
i=1

(3i− 1)
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2.[8] Find all complex numbers z such that z3 = −4 + 4
√

3i. Express your answer(s)
in exponential form.

Solution:

| − 4 + 4
√

3i| =
√

(−4)2 + (4
√

3)2 =
√

16 + 48 =
√

64 = 8

arg(−4 + 4
√

3i) = 2π
3

The exponential form is −4 + 4
√

3i = 8ei(
2π
3

)

Let z = reiθ, so z3 = r3ei(3θ).
So the equation z3 = −4 + 4

√
3i becomes r3ei(3θ) = 8ei(

2π
3

) .

From this, we know that r3 = 8 and 3θ = 2π
3

+ 2nπ.

The modulus of all three roots is r = 2.

The arguments of the roots are

θ = (
1

3
)(

2π

3
+ 2nπ)

=
2π

9
+

2nπ

3

=
(2 + 6n)π

9

The arguments of the three roots can be found by finding angles for the values
of n = 0, 1, 2.

So θ0 =
2π

9
,

θ1 =
8π

9

and θ2 =
14π

9

(
≡ −4π

9

)
Hence the three solutions are

2e(
2π
9

)i, 2e(
8π
9

)i, and 2e(
14π
9

)i.
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3.[6] Consider the polynomial P (x) = 3x6 + 12x5 − 4x3 + 17x2 + 5.
(DO NOT ATTEMPT TO FACTOR THIS POLYNOMIAL)

(a) Apply Descartes rules of signs to P (x). Be specific about what information
it gives.

Solution:

Since there are 2 sign changes in P (x), the number of positive real roots
of P (x) is 2 or 0.

P (−x) = 3 x6 − 12x5 + 4x3 + 17x2 + 5

Since P (−x) has 2 sign changes, the number of negative real roots of
P (x) is 2 or 0.

(b) Apply the bound theorem to P (x). Be specific about what information it
gives.

Solution:

If P (α) = 0 then using the bounds theorem |α| < M
a4

+ 1 where
M = max{12, 4, 17, 5}.
So |x| < 17

3
+ 1 = 20

3
= 62

3

The modulus of a root of P (x) must be smaller than 62
3
.

(c) What are the possible rational roots of P (x)? Include any information from
part a and/or part b.

Solution: Since 3 has divisors {±1,±3} and 5 has divisors {±1,±5},
from the rational root theorem we know that the possible rational roots
are limited to the set
{±1,±5,±1

3
,±5

3
}

None of the possibilities are beyond the bound mentioned in part b, and
we know from part a that both positive and negative roots are possible.
Hence the possible rational roots are
{±1,±5,±1

3
,±5

3
}
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4.[7] Given that 1− i is a root of P (x) = 3x4 − 8x3 + 12x2 − 8x+ 4,
express P (x) as a product of linear terms.

Solution: We know that since 1 − i is a root, then so 1 + i is also a root.
Hence (x− (1− i)) and (x− (1 + i)) are both factors.

So (x− (1− i))(x− (1 + i)) = (x2 − 2x+ 2) is also a factor.

3x2 − 2x+ 2

x2 − 2x+ 2
)

3x4 − 8x3 + 12x2 − 8x+ 4

3x4 − 6x3 + 6x2

− 2x3 + 6x2 − 8x

− 2x3 + 4x2 − 4x

x2 − 4x+ 4

x2 − 4x+ 4

0

To find the roots of 3x2 − 2x+ 2 we use x = −b±
√
b2−4ac

2a
, so

x =
−(−2)±

√
(−2)2 − 4(3)(2)

2(3)

=
2±
√

4− 24

6

=
2±
√
−20

6

=
2± 2

√
5i

6

=
1±
√

5i

3

Hence P (x) = 3(x− (1− i))(x− (1 + i))(x− (1+
√

5i
3

)(x− (1−
√

5i
3

).
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5.[8] Given −→u = [3, 4,−1] and −→v = [−2, 3, 7] and θ is the angle between them.

(a) Find the value of cos θ. (do not simplify)

Solution:

Using the formula −→u · −→v = ||−→u || ||−→v || cos θ;

−→u · −→v = (3)(−2) + (4)(3) + (−1)(7) = −6 + 12− 7 = −1

||−→u || =
√

32 + 42 + (−1)2 =
√

9 + 16 + 1 =
√

26

||−→v || =
√

(−2)2 + 32 + 72 =
√

4 + 9 + 48 =
√

62

Giving −1 =
√

26
√

62 cos θ.

So cos θ =
−1√

26
√

62
.

(b) Find a non-zero vector that is orthogonal to both −→u and −→v .

Solution:

A vector that is orthogonal to both −→u and −→v is −→u ×−→v .

The formula is −→u ×−→v = [u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1].

So

−→u ×−→v = [(4)(7)− (3)(−1), (−1)(−2)− (3)(7), (3)(3)− (−2)(4)]

= [28 + 3, 2− 21, 9 + 8]

= [31,−19, 17]

So a nonzero vector that is othogonal to both −→u and −→v is [31,−19, 17].


