The University of Manitoba

Classical and Linear Algebra

Final Examination: Fall 2009. December 14th, 2009.

Tin	ne: Two hours	Total Marks: 100
Las	st Name (Capitals letters only):	
Stu	dent Number:	
Firs	st Name (Capital letters only):	
	nature: .cknowledge that cheating is an extremely serious offense	2.)
Plac	ce a check mark (\checkmark) in the box corresponding to your in	nstructor and section.
	T. Berry (A01)	
	J. Chipalkatti (A02)	•
	Challenge for credit	
	Deferred	

Instructions:

Please ensure that your paper has a total of 11 pages (including this page). Read the questions thoroughly and carefully before attempting them.

You are **not** allowed to use any of the following: calculators, notes, books, dictionaries or electronic communication devices (e.g., cellular phones, pagers or blackberries). You may use the **left-hand pages** for rough work.

	Obtained	Maximum
Page 2		13
Page 3		12
Page 4		10
Page 5		13
Page 6		10
Page 7		12
Page 8		7
Page 9		7
Pages 10-11		16
Total		100

Q1. Prove the following statement using the Principle of Mathematical Induction: [7]

$$\sum_{r=1}^{n} (-1)^r = \frac{(-1)^n - 1}{2}.$$

Q2. Consider the polynomial $p(x) = 7x^{27} - 34x^8 + 15x^2 - x + 10$.

[4+2]

(a) List all the possible rational roots of p(x).

Answer:

(b) Use Descartes' rule of signs to determine the maximum number of positive and negative (real) roots.

Answer: The polynomial p(x) has at most _____ positive roots, and at most _____ negative roots.

Q3. Let $p(x) = x^{2009} - 3x^{1492} + 2$. Find the remainder when p(x) is divided by x + i. [4]

Remainder = ____

Q4.	Let	z_1	=	1	+	i,	and	z_2	=	-1	+	i	√	3
-----	-----	-------	---	---	---	----	-----	-------	---	----	---	---	----------	---

[4+4]

(a) Express z_1 and z_2 in exponential form.

$$z_1 =$$

 $z_2 = \underline{\hspace{1cm}}$

(b) Find the modulus and the principal value of the argument of $z=z_1^2\,z_2$.

$$|z| =$$

p.v. arg(z) =______

Q5. Consider the lines L_1, L_2 in \mathbb{R}^3 given by the following parametric equations:

 $\quad \text{and} \quad$

$$L_2: (x, y, z) = (3, 2, 0) + t(2, -3, -2).$$

 $L_1:(x,y,z)=(7,1,4)+s(1,1,3),$

Find the point of intersection of L_1 and L_2 .

Answer: The point of intersection is _____

Q6. Let θ denote the angle between the vectors u = (3, 0, -4) and v = (1, 1, -1). Find the value of $\sin \theta$.

Answer: $\sin \theta =$

Q7. Let L denote the line in \mathbb{R}^3 given by the symmetric equation

$$\frac{x-1}{3} = \frac{y-2}{-2} = \frac{z-5}{4},$$

and let \mathcal{P} denote the plane x + y + z = 3. Find the point at which L intersects \mathcal{P} . [5]

Answer: The point of intersection is _____

Q8. Let $A = \begin{bmatrix} 1 & 0 \\ i & -i \end{bmatrix}$, Find the following matrices in simplified form. [4+4] (Note that $i = \sqrt{-1}$.)

(a)
$$A^2 =$$

(b)
$$A^{-1} =$$

[5]

[5]

Q9. Find the value of k for which the following system is consistent:

$$3x - 2y = k$$
, $2x + y = 6$, $-x + 3y = 4$.

Answer: $k = \underline{\hspace{1cm}}$

Q10. Find the value of the constant a such that the vectors

(-1,2,a), (2,7,4), (3,5,-2a)

are linearly dependent.

Answer: $a = \underline{\hspace{1cm}}$

Q11. Let
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 1 & 2 \\ 1 & 0 & 3 \end{bmatrix}$$
.

[3+3]

(a) $\det(A) =$ _____

(b) Find the element in the 2nd row and 3rd column of A^{-1} .

Answer: _____

Q12. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ -3 & 4 & 2 \end{bmatrix}$$
. Use the direct method (i.e., the row-reduction method) to find A^{-1} .

Q13. Consider the matrix
$$A = \begin{bmatrix} 5 & 0 & -3 \\ -4 & 1 & 3 \\ 8 & 0 & -4 \end{bmatrix}$$
.

[3+4]

(a) Find the characteristic polynomial of A.

Answer:

(b) It is given that $\lambda = 1$ is one of the eigenvalues of A. Find the remaining two eigenvalues.

Answer:

Q14. Consider the linear transformation $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ given by the formula $T(v_1, v_2, v_3) = (2v_1 - v_2 + v_3, v_1 - 4v_3)$.

[2+1+4]

(a) Write down the matrix corresponding to T.

(b) Find the image of the vector (1, -6, 3) under T.

Answer: T(1, -6, 3) =

(c) Find a nonzero vector v in \mathbb{R}^3 such that T(v) = 0.

Answer: v =

- Q15. Consider the symmetric matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix}$. It is given that 3 and 0 are two of the eigenvalues of A.
 - [5+5+2+4]

(a) Find an eigenvector u corresponding to the eigenvalue 3.

Answer: $u = _$

(b) Find an eigenvector \boldsymbol{v} corresponding to the eigenvalue 0.

Answer: $v = _$

(Q15 continued ...)

(c) Find the angle between u and v.

Answer: The angle is _____

(d) Find the remaining eigenvalue of A.

Answer: $\lambda = \underline{\hspace{1cm}}$