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Q1. Prove the following statement using the Principle of Mathematical Induction: (7]

Sy - et

r=1 =

Q2. Consider the polynomial p(z) = 722 — 3428 + 1522 — z + 10. [4+2]
(a) List all the possible rational roots of ().

‘Answer:

(b) Use Descartes’ rule of signs to determine the maximum number of positive and negative
(real) roots.

Answer: The polynomial p(z) has at most positive roots, and

at most negative roots.
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Q3. Let p(z) = %% — 322°?2 1 2. Find the remainder when p(z) is divided by z +14. [4]

Remainder =

Q4. Let 21 =1+, and 20 = —1 4 /3. [4-+4]

(a) Express z; and z, in exponential form.

(b) Find the modulus and the principal value of the argument of z = 2} z,.

2| = , p.v. arg(z) =
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Q5. Consider the lines L,, L, in R? given by the following parametric equations: 5]
Ly: (zyy,2) = (7,1,4) + 5 (1,1, 3),

and
H(2,9,2) = (3,2,0) + (2, -3, -2).
Find the point of intersectlon of L1 and L,.

Answer: The point of intersection is

Q6. Let € denote the angle between the vectors 1 — (3,0,—4) and v = (1,1, —1). Find
the value of sin 6. [5]

Answer: sin =
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Q7. Let L denote the line in R® given by the symmetric equation
-1 y—2 2z2-5
3 -2 4
and let P denote the plane z +y + 2z = 3. Find the point at which L intersects P.  [5]
Answer: The point of intersection is
1 0 . ) S
Q8. Let A= | It Find the following matrices in simplified form. [4+4]

i
(Note that ¢ = /—1.)

(3) A2 =

(b) A-1 =
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Q9. Find the value of & for which the following system is consistent:
3r—-2y=k, 2z+y=6, —x+ 3y =4.

Answer: k =

Q10. Find the value of the constant a such that the vectors

(—122:a’): (21 754) (3,5-2&)
are linearly dependent.

Answer: q =
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21 3 |

Q11. LetAz[o 1 2J. | L [3+3]
1 0 3

(a) det(A) =

(b) Find the element in the 2nd row and 3rd column of A-1.

Answer:
100
Q12. Let A = 0 2 0 |. Use the direct method (i.e., the row-reduction method) to
-3 4 2

find A1, [6]
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5 0 -3
Q13. Consider the matrix A= | —4 1 3 |. - [3+4]
8 0 —4 (

(a) Find the characteristic polynomial of A.

Answer:

(b) It is given that A = 1is one of the eigenvalues of A. Find the remaining two eigenvalues. (

Answer:
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Q14. Consider the linear transformation 7" : R® — R? given by the formula
T(vlz ’U3> = (2 V) — Vg + V3, U — 4’1}3) )

(a) Write down the matrix corresponding to T

(b) Find the image of the vector (1, -6, 3) under T.

Answer: T(1,-6,3) =

(c) Find a nonzero vector v in R? such that T(v) =0.

Answer: v =

[24+1+4]
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--It-is given-that 3-and 0 are two

OPT*L\J

01
Q15. Consider the symmetric matrix 4 = | 11
: 21

of the eigenvalues of A. [5+5+2+4]

(a) Find an eigenvector u corresponding to the eigenvalue 3.

Answer: u =

(b) Find an eigenvector v corresponding to the eigenvalue 0.

Answer: v =
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(Q15 continued .. .)
(‘C) Find the angle between u and v.

Answer: The angle is

(d) Find the remaining eigenvalue of A.

Answer: A= ___
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