Attempt all questions and show all your work. Due September 24, 2010.

1. Use Mathematical Induction to prove that for all $n \geq 1$,

$$
n+(n+1)+(n+2)+\cdots+(2 n)=\frac{3 n(n+1)}{2}
$$

2. Use Mathematical Induction to prove that for all $n \geq 1$,

$$
\sum_{i=1}^{n}(i+3)^{2}=\frac{n\left(2 n^{2}+21 n+73\right)}{6}
$$

3. Use Mathematical Induction to prove that for all $n \geq 1$,

$$
1+\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\cdots+\frac{1}{3^{2 n}}=\frac{3}{2}\left(1-\left(\frac{1}{3}\right)^{2 n+1}\right)
$$

4. (a) Write the sum $1+3+5+\cdots+(4 n-1)$ using sigma notation.
(b) Use Mathematical Induction to prove that for all $n \geq 1$, the above expression is equal to $(2 n)^{2}$.
5. Use Mathematical Induction to prove that for all $n \geq 1,3^{n}>n^{2}$.
6. Consider the sequence of real numbers defined by the relations $x_{1}=1$ and $x_{n+1}=$ $\sqrt{1+2 x_{n}}$ for $n \geq 1$. Use the Principle of Mathematical Induction to show that $x_{n}<4$ for all $n \geq 1$.
7. Let a and d be fixed real numbers. Prove using Mathematical Induction that for each $n \geq 1$,

$$
a+(a+d)+(a+2 d)+\cdots+(a+(n-1) d)=\frac{n}{2}(2 a+(n-1) d)
$$

8. (a) Express the sum $\sum_{k=1}^{m}(2+3 k)^{2}$ in terms of three simpler sums in sigma notation by expanding. Do not calculate the value.
(b) Find the value of the sum

$$
\sum_{p=1}^{100}\left(2-10 p+3 p^{2}\right)
$$

HINT: Make use of the formulas

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \text { and } \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

(c) Rewrite the sum

$$
\sum_{r=12}^{122} \frac{r-6}{r+9}
$$

using an index whose initial and terminal values are 1 and 111 (HINT: use a change of variables).

