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1. Consider the polynomial P (x) = x5 − 2x4 − 4x3 + 4x2 − 5x + 6.

(a)[6] Use Descartes’ rules of signs to state the number of possible positive and negative

roots of P (x)

Solution:

P (x) has four sign changes, so the number of possible positive roots is 4, 2, or 0.

P (−x) = (−x)5−2(−x)4−4(−x)3 + 4(−x)2−5(−x) + 6 = −x5−2x4 + 4x3 + 4x2 +

5x + 6 has one sign change, so only one negative root is possible.

(b)[4] Use the Rational Root Theorem to list all possible rational roots of P (x).

Solution:

If a rational number p
q

is a root of P (x) then q must divide the coefficient of x5

which equals 1, and p must divide the constant term of P (x) which equals 6.

Thus the only possible rational roots are ±1,±2,±3, and ±6.

(c)[12] Given that i is a root of P (x), find the other roots of this polynomial.

Solution:

Since P (x) has real coefficients, i = −i is also a root, and it follows that (x −
i)(x + 1) = x2 + 1 is a factor of P (x) . By using long division, we get that

P (x) = (x2 + 1)(x3− 2x2− 5x + 6) . Since 13− 2(13)− 5(1) + 6 = 0, 1 is a root of

P (x). Dividing x3− 2x2− 5x + 6 by x− 1, we find that x2− x− 6 is a factor of

P (x). Finally, x2− x− 6 = (x− 3)(x + 2), so the roots of P (x) are i,−i, 1,−2, 3.

(d)[5] Express P (x) as the product of linear factors only.

Solution:

P (x) = (x− i)(x + i)(x− 1)(x + 2)(x− 3).
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2. Consider the vectors ~v1 = a~i + 2~j + 4~k and ~v2 = a~i + 2~j + a~k, where a is a real

number.

(a)[7] Determine for which values of a the vectors ~v1 and ~v2 are perpendicular.

Solution:

For ~v1 ⊥ ~v2 we must have that

0 = ~v1 · ~v2 = (a)(a) + (2)(2) + 4a = a2 + 4a + 4 = (a + 2)2.

Therefore, a = −2.

(b)[10] Determine the values a for which ~v1 × ~v2 = ~0.

Solution:

~v1 × ~v2 = det

 ~i ~j ~k

a 2 4

a 2 a

 = det

 ~i ~j ~k

a 2 4

0 0 a− 4


= (a − 4)(−1)3+3 det

(
~i ~j

a 2

)
= (a − 4)(2~i − a~j = (2a − 8)~i + (4a − a2)~j. Thus,

for ~v1× ~v2 = ~0 we must have that 2a− 8 = 0 and a2− 4a = 0. Obviously, a = 4

is the only solution.
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3. Let P denote the plane that is determined by the points P1(1, 1, 0), P2(1, 0, 1) and

P3(0, 1, 1). Find

(a)[12] the point-normal equation for P .

Solution:

In order to obtain a vector ~n that is normal to the plane P we evaluate

~n =
−−→
P1P2 ×

−−→
P1P3 = [0,−1, 1]× [−1, 0, 1] = det

 ~i ~j ~k

0 −1 1

−1 0 1


=~i(−1)1+1 det

(
−1 1

0 1

)
+ (−1)(−1)3+1 det

(
~j ~k

0 1

)
=~i(−1)(1)− (1)(0)− 1(~j +~k) = −(~i +~j +~k). Therefore, the coordinates of a point

P (x, y, z) on the plane must satisfy the equation

0 =
−−→
P1P · (~i +~j + ~k) = (x− 1)(1) + (y − 1)(1) + (z − 0)(1) = x + y + z − 2.

(b)[5] the equations in symmetric form of the line which is perpendicular to the plane P
and contains the point P1.

Solution:

The position vector [x, y, z] of a point on the line inquestion is obtained as

[x, y, z] =
−−→
OP1 + s~n = [1, 1, 0] + s[1, 1, 1] = [1 + s, 1 + s, s].

Thus, x = 1 + s, y = 1 + s, z = s are the scalar parametric equations of the line in

question, so x− 1 = y − 1 = z are the equations in symmetric form.



DATE: November 9, 2011

DEPARTMENT & COURSE NO: MATH 1210

EXAMINATION: Techniques of Classical and Linear Algebra

UNIVERSITY OF MANITOBA
SECOND TERM TEST

PAGE: 4 of 7

TIME: 1 hour

EXAMINER: various

4. Given the matrix A =

(
1 0 −1

0 −1 1

)
, indicate whether or not the expressions below

are defined. If an expression is defined, evaluate the resulting matrix; if it is not defined,

explain why not.

(a)[2] AT .

Solution:

AT =

 1 0

0 −1

−1 1



(b)[3] A + AT .

Solution:

A + AT is not defined, since A is a 2× 3-matrix and AT is a 3× 2-matrix, so

they do not have the same dimensions.

(c)[8] AAT .

Solution:

AAT =

(
1 0 −1

0 −1 1

) 1 0

0 −1

−1 1


=

(
(1)(1) + (0)(0) + (−1)(−1) (1)(0) + (0)(−1) + (−1)(1)

(0)(1) + (−1)(0) + (1)(−1) (0)(0) + (−1)(−1) + (1)(1)

)
=

(
2 −1

−1 2

)
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5. Consider the system of linear equations.

2x + 6w = 2; z + 7w = 1; 2x + y + 3w = 1; 4x + 15w = 1.

(a)[4] Write down the augmented matrix of this system.

Solution:

A =


2 0 0 6 | 2

0 0 1 7 | 1

2 1 0 3 | 1

4 0 0 15 | 1

 .

(b)[15] Solve the system by using Gauss-Jordan elimination. Clearly indicate the elemen-

tary row operations that you use.

Solution:

A
R3→R3−R1−−−−−−−→
R4→R4−2R1


2 0 0 6 | 2

0 0 1 7 | 1

0 1 0 −3 | −1

0 0 0 3 | −3

 R2↔R3−−−−−−−−−−−→
R1→ 1

2
R1; R4→ 1

3
R4


1 0 0 3 | 1

0 1 0 −3 | −1

0 0 1 7 | 1

0 0 0 1 | −1


R3→R3−7R4−−−−−−−−−−−−−−−−→

R1→R1−3R4; R2→R2+3R4


1 0 0 0 | 4

0 1 0 0 | −4

0 0 1 0 | 8

0 0 0 1 | −1

 .

Therefore, the solutions are x = 4, y = −4, z = 8, w = −1.
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6.[7] Evaluate

det


2 0 0 6

0 0 1 7

2 1 0 3

4 0 0 15

 .

Solution:

det


2 0 0 6

0 0 1 7

2 1 0 3

4 0 0 15

 = (1)(−1)3+2 det

 2 0 6

0 1 7

4 0 15

 = − det

 2 0 6

0 1 7

4 0 15


= −(1)(−1)2+2 det

(
2 6

4 15

)
= −((2)(15)− (6)(4)) = −(30− 24) = −6.
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