DATE: December 8, 2012 (6:00 p.m. – 8:00 p.m.) FINAL EXAMINATION DEPARTMENT & COURSE NO: MATH1210 TIME: 2 hours **EXAMINATION**: Techniques of Classical and Linear Algebra **EXAMINERS**: D. Kalajdzievska **PAGE NO**: 1 of 11 S. Kalajdzievski

D. Trim

INSTRUCTIONS:

- 1. No aids permitted.
- **2.** Attempt all questions.
- 3. If insufficient space is provided for a solution to a problem, continue your work on the back of the previous page.
- 4. Check that your examination booklet contains questions numbered from 1 to 10.
- 5. Fill in the information requested below.

Student Name (Print):	
Student Signature:	
Student Number:	
Seat Number:	

D. Trim Circle your instructor's name: D. Kalajdzievska S. Kalajdzievski

Question	Maximum	Assigned	Question	Maximum	Assigned
	Mark	Mark		Mark	Mark
1	6		6	5	
2	5		7	8	
3	6		8	4	
4	5		9	10	
5	3		10	8	
Total	25		Total	35	

Examination Total /60

DATE: December 8, 2012 (6:00 p.m. – 8:00 p.m.) FINAL EXAMINATION DEPARTMENT & COURSE NO: MATH1210 TIME: 2 hours EXAMINATION: Techniques of Classical and Linear Algebra EXAMINERS: D. Kalajdzievska PAGE NO: 2 of 11 S. Kalajdzievski D. Trim

6 1. (a) According to the rational root theorem, what are the possible rational numbers that can satisfy the equation

 $5x^3 + 4x^2 + 4x - 1 = 0?$

(b) Find all roots of the equation.

 DATE: December 8, 2012 (6:00 p.m. - 8:00 p.m.)
 FINAL EXAMINATION

 DEPARTMENT & COURSE NO: MATH1210
 TIME: 2 hours

 EXAMINATION: Techniques of Classical and Linear Algebra EXAMINERs: D. Kalajdzievska
 PAGE NO: 3 of 11

 S. Kalajdzievski
 D. Trim

5 2. Find parametric equations for the line through the point (2, -1, 3) parallel to the line defined by x + y - 2z = 4, 2x - y + 3z = 6.

DATE: December 8, 2012 (6:00 p.m. – 8:00 p.m.) FINAL EXAMINATION DEPARTMENT & COURSE NO: MATH1210 TIME: 2 hours EXAMINATION: Techniques of Classical and Linear Algebra EXAMINERs: D. Kalajdzievska PAGE NO: 4 of 11 S. Kalajdzievski D. Trim

6 3. Find all solutions of the system of equations

$$x + y + z = 2,$$

$$2x - y + 3z = -1,$$

$$7x + y + 9z = 4.$$

DATE: December 8, 2012 (6:00 p.m. – 8:00 p.m.) FINAL EXAMINATION
DEPARTMENT & COURSE NO: MATH1210 TIME: 2 hours
EXAMINATION: Techniques of Classical and Linear Algebra EXAMINERS: D. Kalajdzievska
PAGE NO: 5 of 11 S. Kalajdzievski
D. Trim

5 4. Use Cramer's rule to find the value of y satisfying the system of equations

$$\begin{aligned} x+2y-3z&=4,\\ 2x+y&=3,\\ x-y+z&=-1 \end{aligned}$$

DATE: December 8, 2012 (6:00 p.m. - 8:00 p.m.)FINAL EXAMINATIONDEPARTMENT & COURSE NO: MATH1210TIME: 2 hoursEXAMINATION: Techniques of Classical and Linear AlgebraEXAMINERS: D. KalajdzievskaPAGE NO: 6 of 11S. Kalajdzievski

D. Trim

3 5. You are given that the inverse of the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{pmatrix} \quad \text{is} \quad A^{-1} = \frac{1}{8} \begin{pmatrix} 13 & -4 & -1 \\ -15 & 4 & 3 \\ 10 & 0 & -2 \end{pmatrix}.$$

Use the inverse matrix to find the value of z satisfying the system of equations

$$x + y + z = 3,$$

$$2y + 3z = -4,$$

$$5x + 5y + z = 10.$$

DATE : December 8, 2012 (6:00 p.m. – 8:00 p.m.)	FINAL EXAMINATION
DEPARTMENT & COURSE NO: MATH1210	TIME : 2 hours
EXAMINATION : Techniques of Classical and Linear Algebra	EXAMINERS : D. Kalajdzievska
PAGE NO : 7 of 11	S. Kalajdzievski
	D. Trim

- Determine whether the following sets of vectors are linearly dependent or linearly independent. Justify your answers.
 - (a) $\langle 1, 2, -3 \rangle$, $\langle 4, 2, 1 \rangle$, $\langle -5, 1, 17 \rangle$, $\langle 4, 1, 6 \rangle$
 - (b) $\langle 1, 3, -2 \rangle$, $\langle 2, 4, 5 \rangle$, $\langle -2, 1, 3 \rangle$

DATE: December 8, 2012 (6:00 p.m. - 8:00 p.m.)FINAL EXAMINATIONDEPARTMENT & COURSE NO: MATH1210TIME: 2 hoursEXAMINATION: Techniques of Classical and Linear Algebra EXAMINERs: D. KalajdzievskaPAGE NO: 8 of 11S. Kalajdzievski

D. Trim

8 7. The matrix of a linear transformation T is

$$A = \begin{pmatrix} 2 & 2 & 3\\ 1 & 2 & 1\\ 2 & -2 & 1 \end{pmatrix}.$$

- (a) Find $T\langle 1, -2, 4 \rangle$.
- (b) Find all eigenvalues of the linear transformation.
- (c) Find all eigenvectors associated with the smallest eigenvalue in part (b).

DATE : December 8, 2012 (6:00 p.m. – 8:00 p.m.)	FINAL EXAMINATION
DEPARTMENT & COURSE NO: MATH1210	TIME : 2 hours
EXAMINATION : Techniques of Classical and Linear Algebra	EXAMINERs : D. Kalajdzievska
PAGE NO : 9 of 11	S. Kalajdzievski
	D. Trim

4 8. (a) Show that if λ is an eigenvalue of a matrix A, then λ² is an eigenvalue for the matrix A².
(b) If v is an eigenvector corresponding to λ, what is an eigenvector corresponding to λ²?

DATE : December 8, 2012 (6:00 p.m. – 8:00 p.m.)	FINAL EXAMINATION	
DEPARTMENT & COURSE NO: MATH1210	TIME : 2 hours	
EXAMINATION : Techniques of Classical and Linear Algebra	EXAMINERS: D. Kalajdzievska	
PAGE NO : 10 of 11	S. Kalajdzievski	
	D. Trim	

10 9. In the five parts of this question, circle the correct answer.

- (a) When the determinant of the coefficient matrix of a system of n linear, homogeneous equations in n unknowns has value zero, the system has
- (i) one solution
- (ii) no solutions
- (iii) an infinity of solutions
- (b) The augmented matrix of a system of m equations in n unknowns has r leading ones in its RREF, where r < n. The system has

(i) no solutions

- (ii) one solution
- (iii) an infinity of solutions with m r parameters
- (iv) an infinity of solutions with n r parameters
- (v) an infinity of solutions with an undetermined number of parameters
- (c) A system of n equations in m unknowns is known to have exactly one solution. The number of leading ones in the RREF of the augmented matrix for the system is
- (i) n
- (ii) m
- (iii) n-m
- (iv) m-n
- (v) none of the above

(d) $(3AB)^T$ is equal to

(i) $3A^TB^T$ (ii) $3B^TA^T$ (iii) $(1/3)A^TB^T$ (iv) $(1/3)B^TA^T$ (v) none of the above

(e) If A is an invertible matrix, then

(i) $(A^2)^{-1} = (A^{-1})^2$ (ii) $(A^2)^{-1} = \frac{1}{A^2}$ (iii) A^2 does not have an inverse (iv) A^2 has an inverse but it is not (i) or (ii)

 DATE: December 8, 2012 (6:00 p.m. - 8:00 p.m.)
 FINAL EXAMINATION

 DEPARTMENT & COURSE NO: MATH1210
 TIME: 2 hours

 EXAMINATION: Techniques of Classical and Linear Algebra EXAMINERs: D. Kalajdzievska
 PAGE NO: 11 of 11

 S. Kalajdzievski
 D. Trim

8 10. Use mathematical induction to prove that 576 divides $5^{2n+2} - 24n - 25$ for $n \ge 1$.