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1. The following are short answer questions.

(a)[3] Let −→u = 〈−2, 5,−2〉 and −→v =
−→
AB where A(3, 7, 1) and B(4, 6, 4) are two

points. Find the value of cos θ where θ is the angle between the vectors −→u
and −→v .

(b)[3] Use Cramer’s rule to find the value of y only for the linear system

1

2
x+ y = 7

6x− 2y = 18 .

(Do not use any other method)

(c)[2] Suppose the coefficient matrix of a homogeneous system is a 6× 9 matrix of
rank 4. How many linearly independent basic solutions will it have?
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(d)[2] Are the vectors {〈1, 3, 7〉, 〈3, 2,−5〉, 〈4,−1, 6〉, 〈2,−7, 2〉} linearly dependent
or linearly independent? Justify your answer.

(e)[3] Use formula
m
∑

k=1

k2 =
1

6
[m(m+ 1)(2m+ 1)] to evaluate the sum

11
∑

j=2

[

j2 − 2j + 1
]

.

(f)[2] Is the transformation T :
v′
1

= −2v1 − v2 + v3
v′
2

= v1 − 4v2
v′
3

= v1 − v2 + v3

a linear transformation?

Why?

(g)[3] Let T :
v′
1

= v1 − v2
v′
2

= v1 + v2
be a linear transformation. Is it true that

T 〈2, 5〉 = 2T 〈1, 0〉 + 5T 〈0, 1〉 ? Why?
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2.[7] Let A =

(

3 −4
1 −1

)

; use mathematical induction on positive integer n ≥ 1 to

prove that An =

(

2n+ 1 −4n
n 1− 2n

)

.
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3.[7] Find all real values of x such that

3 + i

1− i
− i2012 = −

√
5− 2i + 1 + xi .
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4. Let P (x) = 2x3 + 3x2 + 5x+ 4 .

(a)[3] Show that P (x) has no real root in the interval [1 , 3] .

(b)[5] Find all roots of the polynomial P (x) .
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5. LetA =

(

3 −2 −1
2 −1 0

)

, B =





0 −2
1 2
−1 3



, C =

(

2 −1
1 3

)

,D =





1 2 −1
0 1 −1
−2 −1 1



,

E =
(

3 2 1
)

and F =





4
1
−3



.

(a)[6] Indicate if the expression is defined or undefined by placing a check mark
(X) in the appropriate column. If it is defined, then indicate its size.

EXPRESSION UNDEFINED DEFINED SIZE

BTAT + 2C

EA+ F T

BTB +D

AF + (EB)T

(b)[4] Evaluate AD +BT
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6. Consider the vectors:

−→u1 = 〈1,−1, 0〉 −→u2 = 〈0, 1, 1〉 −→u3 = 〈2,−2, 1〉

(a)[3] Show that the vectors {−→u1,
−→u2,

−→u3} are linearly independent. (Justify your
answer.)

(b)[6] Write −→v = 〈−4, 11, 4〉 as a linear combination of {−→u1,
−→u2,

−→u3}.
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7. For the matrix A =





2 −4 1
0 2 4
1 −2 0



 :

(a)[7] Use row reduction to find A−1 if it exists.

(b)[3] Use the information from part (a) to solve the system

2x− 4y + z = 1

2y + 4z = −1

x− 2y = 2.

(Do not use any other method.)
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8. The matrix

A =





1 −2 3
4 −2 1
0 −3 2





has determinant of −21 (you do not need to show this). The adjoint is

adj(A) =





−1 a 4
−8 2 11
b 3 6



 .

(a)[6] Find the values of a and b.

(b)[3] Use all the above to find A−1.
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9. Let A be the matrix A =





1 −12 3
0 −3 1
0 −4 2



 .

(a)[6] Find all eigenvalues of A.

(b)[6] Find the eigenvectors corresponding to λ = 1 .
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This is a bonus question. You do not have to answer it.

[5] 10. Show that if λ is an eigenvalue of a matrix A which satisfies A3 = A,

then λ = 0, 1 or −1.
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