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1. (a)[8] Use mathematical induction to prove that

1 · 2 + 2 · 3 + 3 · 4 + · · ·+ 2n(2n+ 1) =
4n(n+ 1)(2n+ 1)

3
, for all n ≥ 1.

Solution: Denote the given statement by Pn. [1 mark]

(Base step) When n = 1, 1 · 2 + 2 · 3 = 8 and 4(1 + 1)(2 + 1)/3 = 8. So P1 is

valid. [1 mark]

(Inductive step) Suppose Pk is valid for some k ≥ 1, i.e.,

1 · 2 + 2 · 3 + 3 · 4 + · · ·+ 2k(2k + 1) =
4k(k + 1)(2k + 1)

3
. [2 marks]

We want to prove that Pk+1 is also valid, i.e.,

1 · 2 + 2 · 3 + · · ·+ 2(k + 1)(2(k + 1) + 1) =
4(k + 1)(k + 1 + 1)(2(k + 1) + 1)

3

LHS of Pk+1 is:

1 · 2 + 2 · 3 + 3 · 4 + · · ·+ 2k(2k + 1) + (2k + 1)(2k + 2) + (2k + 2)(2k + 3)

=
4k(k + 1)(2k + 1)

3
+ (2k + 1)(2k + 2) + (2k + 2)(2k + 3)

=
4k(k + 1)(2k + 1) + 6(2k + 1)(k + 1) + 6(k + 1)(2k + 3)

3

=
(k + 1)(4k(2k + 1) + 6(2k + 1) + 6(2k + 3))

3

=
(k + 1)(8k2 + 28k + 24)

3

=
4(k + 1)(k + 2)(2k + 3)

3

RHS of Pk+1:

4(k + 1)(k + 1 + 1)(2(k + 1) + 1)

3
=

4(k + 1)(k + 2)(2k + 3)

3

Thus Pk+1 is valid. [3 marks; had to include the previous sentence for full marks]

Therefore, by the principle of mathematical induction, Pn is valid for all n ≥ 1.

[1 mark]

Remark: marks for a correct statement are indicated. It was easy to obtain

4 marks just by following the script. With the checking of P1 being valid, that

means 5 marks could be obtained before anything complicated was undertaken.

(b)[3] Write 2 + 6 + 12 + · · ·+ 2n(2n+ 1) in sigma notation.

Solution:
2n∑
k=1

k(k + 1).



DATE: October 23, 2014

COURSE: MATH 1210

EXAMINATION:

Techniques of Classical and Linear Algebra

UNIVERSITY OF MANITOBA

MIDTERM EXAMINATION

PAGE: 2 of 5

TIME: 60 Minutes

EXAMINER: Various

Beware:
2n∑
k=1

k(k+ 1) 6=
2n∑
k=1

n(n+ 1), so be careful what letters you use where..

2. Let f(x) = 6x4 + kx3 + 18x2 + 17x+ 4, where k is an unknown real number. When f(x)

is divided by 2x+ 1, the remainder is −1.

(a)[3] Find the value of k.

Solution: By Remainder Theorem, f(−1/2) = −1, that is,

6

(
−1

2

)4

+ k

(
−1

2

)3

+ 18

(
−1

2

)2

+ 17

(
−1

2

)
+ 4 = −1.

Solving it for k gives k = 11.

Remark: we can also use long division to find k. However, the computation is

much more complicated.

(b)[3] Use Descartes’ rule of signs to find the possible numbers of positive and negative

zeros of f(x).

Solution: Since the coefficients of f(x) have no sign changes, f(x) has no

positive zeros.

Since the coefficients of f(−x) = 6x4−11x3+18x2−17x+4 have 4 sign changes,

f(x) has 4, 2 or 0 negative zeros.

(c)[3] Use bounds theorem to find bounds for zeros of f(x).

Solution: Since M = max{11, 18, 17, 4} = 18, all zeros x of f(x) satisfy |x| <
18

6
+ 1 = 4.

(d)[3] Taking the results of (b), (c) and the given condition into account, use the rational

root theorem to list all possible rational zeros of f .

Solution: The rational root theorem gives possible rational roots:

±1,±2,±4,±1

2
,±1

3
,±2

3
,±4

3
,±1

6
.

Results of (b) reject all positive rationals and results of (c) reject −4. The given

condition “when f(x) is divided by 2x + 1 the remainder is −1” implies −1

2
is

not a root (Remainder Theorem).

Thus, all possible rational zeros are: −1,−2,−1

3
,−2

3
,−4

3
,−1

6
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3.[4] Write the complex expression in Cartesian form:
1

4i

(
1 + i√

2

)48

.

Solution:

∣∣∣∣1 + i√
2

∣∣∣∣ = 1 and arg

(
1 + i√

2

)
= π/4. Hence

1

4i

(
1 + i√

2

)48

=
1

4i

(
e

π
4
i
)48

=
1

4i

(
e12πi

)
=

1

4i
= −1

4
i.

4. Let

A =

1 0 1

4 1 2

0 3 −1

 and B =

 1 0 0 1 −1

2 1 4 1 0

−1 3 4 1 6

 .

Evaluate each of the following expressions or explain why it is undefined:

(a)[3] The (2,3) cofactor of A.

Solution:

c23 = (−1)2+3 ·

∣∣∣∣∣1 0

0 3

∣∣∣∣∣ = −3

(b)[3] The 3rd row of BTA.

Solution: Note that the 3rd row of BTA is the multiplication of the 3rd row of

BT and A, i.e.,

(
0 4 4

)1 0 1

4 1 2

0 3 −1

 =
(

16 16 4
)
.

(c)[4] det(2(A2)T ).

Solution: First calculate |A| by expansion along the first row:

|A| = 1 · (−1− 6)− 0 + 1 · (12− 0) = 5.

Then

∣∣2(A2)T
∣∣ = 23 ·

∣∣(A2)T
∣∣ = 23 · |A2| = 23 · |A|2 = 23 · 52 = 200.

Remark: if A is an n× n matrix and c is a constant, then |cA| = cn|A|.
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5.[8] Using Cramer’s rule, solve the linear system

2x1 −3x2 +x3 = 1

x2 −3x3 = 2

2x3 = 0.

No marks will be given for any other method.

Solution: Let A be the coefficient matrix and Ai be the matrix obtained from A by

replacing its ith column by

1

2

0

, i = 1, 2, 3.

|A| =

∣∣∣∣∣∣∣
2 −3 1

0 1 −3

0 0 2

∣∣∣∣∣∣∣ = 2 · 1 · 2 = 4, |A1| =

∣∣∣∣∣∣∣
1 −3 1

2 1 −3

0 0 2

∣∣∣∣∣∣∣ = 2(1 + 6) = 14

|A2| =

∣∣∣∣∣∣∣
2 1 1

0 2 −3

0 0 2

∣∣∣∣∣∣∣ = 2 · 2 · 2 = 8, |A3| =

∣∣∣∣∣∣∣
2 −3 1

0 1 2

0 0 0

∣∣∣∣∣∣∣ = 0

Thus x1 =
|A1|
|A|

=
14

4
=

7

2
, x2 =

|A2|
|A|

=
8

4
= 2, x3 =

|A3|
|A|

=
0

4
= 0.
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6.[5] Given that

A =

[
5 2

0 k

]
,

find all values of k for which A2− 7A+ 10I2 = 022, where I2 is the 2× 2 identity matrix

and 022 is the 2× 2 zero matrix.

Solution: Direct substitution gives[
5 2

0 k

]2
− 7

[
5 2

0 k

]
+ 10

[
1 0

0 1

]
=

[
0 0

0 0

]
,

that is, [
25 10 + 2k

0 k2

]
−

[
35 14

0 7k

]
+

[
10 0

0 10

]
=

[
0 0

0 0

]
[

0 2k − 4

0 k2 − 7k + 10

]
=

[
0 0

0 0

]

Thus, 2k − 4 = 0 and k2 − 7k + 10 = 0. Hence k = 2.

Remark: One common error is factoring the given equation as (A− 2)(A− 5) = 0.

We cannot do this because A− 2 and A− 5 are undefined.

Instead, we can factor it as (A− 2I)(A− 5I) = 0. However, this factorization is not

helpful, because (A− 2I)(A− 5I) = 0 does NOT imply A− 2I = 0 or A− 5I = 0.

More generally, BC = 0 does not imply B = 0 or C = 0.

For example, if B =

[
1 0

0 0

]
and C =

[
0 0

0 1

]
, then BC = 022, but none of B and C

is a zero matrix.


