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1. [12 points] Let c ∈ R. Prove by induction that for all n ≥ 1,[
1 c

0 1

]n
=

[
1 cn

0 1

]
.
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2. Write the following sums using sigma notation with indexes starting at 1 (do not evaluate):

(a) [3 points] 0.9 + 0.99 + 0.999 + · · ·+ 0.999999999

(b) [4 points]
6∑

j=−2

2j+6

√
j + 4

(c) [3 points]
2(3)

1(4)
+

6(7)

5(8)
+

10(11)

9(12)
+

14(15)

13(16)
+ · · ·+ 414(415)

413(416)



DATE: December 21, 2015

DEPARTMENT & COURSE NO: MATH 1210
EXAMINATION: Techniques for Classical and Linear Algebra

UNIVERSITY OF MANITOBA
FINAL EXAMINATION
PAGE: 3 of 14
TIME: 3 hours
EXAMINER: Borgersen

3. Write the following complex numbers in Cartesian form:

(a) [5 points]
i

3+i

(2− i)2
.

(b) [5 points]

(
1

2
−

√
3

2
i

)75

(Hint: Use DeMoivre’s theorem)
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4. [8 points] Let f(x) = 2x4 − x3 +5x2 − 4x− 12. Factor f(x) completely, and show all your work. If you use
The Remainder theorem, Descartes’ Rules of Signs, The Bounds Theorem, or the Rational Root theorem,
use complete sentences and explain how you’re using them.
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5. [6 points] Find the inverse of

[
1 0

i −i

]
(where i =

√
−1).

6. [4 points] Find all values of k such that A =


k −3 0 3

9 2 2 5

0 3 0 0

12 4 0 k

 is invertible.
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7. [5 points] Let A =

 1 2 3

4 5 6

1 1 −1

. Fill in the missing entries of cof(A) =


−11 −1

5 −4 1

−3

.

8. [6 points] Calculate:

∣∣∣∣∣∣∣∣∣∣
1 x x2 x3

1 1 + x x2 x3

1 x 2 + x2 x3

1 x x2 3 + x3

∣∣∣∣∣∣∣∣∣∣

9. [4 points] A linear system of equations has 4 variables, a, b, c, and d. Find three different solutions for this
system, if RREF of the augmented matrix for the system is

1 −2 0 1 −1

0 0 1 3 2

0 0 0 0 0

0 0 0 0 0

 .
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10. [10 points] Solve the following system by finding the inverse of the coefficient matrix. No marks will be
awarded for any other method.

x + 3y + 2z = 5

x + 3y + 3z = 7

y = −2
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11. [8 points] Let u, v,w be vectors in R3. Which of the following expressions make sense? If they don’t,
explain why.

(a) u • (v + w)

(b) ||v • u||

(c) (u • v) + u

(d) (u • v)× w

(e) (u × v)× w
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12. [10 points] Let
v1 = (3, 6,−9, 3), v2 = (−4,−8, 12,−4), v3 = (1, 1,−2, 1).

Is the set {v1,v2,v3} Linearly Independent or Linearly Dependent? If they are Linearly Independent,
prove it. If they are Linearly Dependent, write one of the vectors as a linear combination of the others.
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13. [2 points] Let T be a linear transformation from R3 to R3 defined by

T (v1, v2, v3) = (3v1, 3v2 − v3, v1 + v2 + 3v3).

Find the matrix A for the linear transformation T .

14. [6 points] Find the intersection of the line

 x

y

z

 =

 1

−3

6

+ t

 5

1

−1

 and the plane 3x− 2y + 4z = 15.
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15. Let T be a linear transformation with associated matrix A =

 5 0 −3

−4 1 3

8 0 −4

.

(a) [3 points] Find the characteristic equation of T .

(b) [2 points] Given that λ = 1 is an eigenvalue of A, find the remaining eigenvalues.

(c) [5 points] Find all eigenvectors associated with the eigenvalue λ = 1.
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16. [0 points] BONUS: 3 MARKS (bonus marks only given for substantial progress). Let A be a matrix, b a
column matrix. Let x0 and x1 both be solutions to the system of equations Ax = 0. Prove that x0 + x1 is a
solution to the homogeneous system of equations Ax = 0 as well.
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