MATH 1210 Assignment 2 Solutions 16R-T1

Attempt all questions and show all your work. Due October 9, 2015.

N\
1. Simplify 5}?1921. + ((1 —2i)3 + 4) and express in Cartesian form.

Solution:
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169 + 45 + 281

=5 —12i + 45+ 28i
= 50 + 16z.

2. Express in the forms required, with all arguments in your answers reduced to numbers
in the interval (—m, 7.

(a) —6 +i1v/108 in polar and exponential forms

Solution:




A Let z = —6 + 4/ 108.

------------------ -+ 08
r? = (—=6)2+(v/108)? = 364108 = 144
and so r = 12.
/-\
i ()] A sing = @ = %g = \/Tg Therefore
<% » ¢=71 and thus § =7 — ¢ = 2.
v Polar form: z = 12 (Cos %” + 2 sin %’r)

Exponential form: z = 1257,

(b) V18 (cos BT + isin 197) in Cartesian and exponential forms

Solution: Let z = /18 (cos & + isin 127).
Exponential form: z = +/ 18e 1.
Cartesian form:
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(¢c) 10e "¢ in Cartesian and polar forms.
Solution:
—57 » _5 _5
10e7s * = 10(cos Tﬂ + i sin 67T) (Polar form)
-3 -1
—10(—2 4 —
0( 5 5 i)
= —5V/3 — 5i. (Cartesian form)

3. cosnb, n € Z, can always be expressed in terms of sin§ and cos f. For example, cos 30 =



cos® ) — 3 cosfsin?f. Use De Moivre’s Theorem to obtain an expression of this type for

cos 70.

Solution: Let z = (cosf + isinf). Then

2" = cos 70+ isin70 by De Moivre’s Theorem, and
2" = (cos +isinf)’

(T
— Z (k’) cos” 7@ (isin )"
k=0

= (g) cos’ 0 + <I) cos® 0(i sin 0) + (;) cos” 0(i sin 0) + (;) cos? 0(isin 0)*
7 3 .. 4 7 2 .. 5 7 .. 6 7 .. 7
+{ ) cos 0(isin®)” + 5 | cos O(isind)° + 6 ) o8 0(isin®)° + . (isind)

= cos’ 0 + Ticos® §sin @ + 2142 cos® O sin? @ + 357 cos? O sin® @ + 35i* cos® fsin? 4
+ 217° cos® fsin® @ + 7i® cos A sin® 6 + " sin” 4

= cos’ 4 Ticos® @sinf — 21 cos® @sin? § — 35i cos? fsin® § + 35 cos® A sin? 4
+ 21icos® Osin® @ — 7cosfsin® 6 — isin” 6

= (cos7 9 — 21 cos® fsin® @ + 35 cos® O sin* @ — 7 cos A sin® 0)
+1 (7 cos® fsin @ — 35 cos® sin® 0 + 21 cos® 0 sin® § — sin” 0) :

Therefore, equating the real and complex parts of z” calculated in each of the two
ways, we have:

cos 70 = cos” O — 21 cos® Osin? 0 + 35 cos® Asin® 6 — 7 cos O sin® 0
sin 76 = 7 cos® Osinf — 35 cos* B sin® 6 + 21 cos? Asin® @ — sin” 6.

4. Find all of the complex 6th roots of —64. Express your answers in Cartesian form.

Solution: Let z be such that 26 = —64 = 64e™ = 64eZ*+D™ Then

(Zk-gl)wi

5 — (646(2k+1)7ri)1/6 — 92

™ 3
k::():z=2€6’=2(c08%+ising):2<§+z—) V3 +i.

k:zl:zzZe%i:2(cosg+ising):2(0—|—z'):2i.

s 5 ) —V3
k:222226%122(C0S%+i8in%): (T+z )= —V3+i.

Uy - _1
k=3:z=27% = 2((208%—}-28111%):2(—3—1—2'—) = —V3—i.




s 3 3
k=d4:2=2F = 2(cos77T +isin§) = 2(0 +i(—1)) = —2i.
1in 11 11 3 -1
k=5: z:2eTz:2(cos%+isinTﬂ) :2(\/7_4—2'—) =3 —i.

5. Solve the equation 2% — 822 4+ 36 = 0 over the complex numbers.

Solution: We will need two trig identity throughout:

9_ 14 cos6 ,8_ 1 —cos®
cosQ—\/ i sm2—w 5

Let z = 22, Then we have that 2% — 82 + 36 = 0, which we can solve using the
quadratic formula:

:I:\/4 4 V-
L 8 6 )(36) 8:|:2 _ 4+ Vo0

2| = /42 + = /16 + 20 = V36 = 6.

Thusz:4iz\/2_:6(%i¢@]> :6<§:I:i?>.

Let 2, = 4 +iv/20, 2, = 4 — i7/20.

o Let 0 = arg(z;). First we will find = such that

2 ) .
2=z =441=6 (§ + z%) = 6(cosf, +isinf) = GeO1+2km)i.
Then:
— (66(91+2k7r )1/2 \/_6 A4 kn)i
k=0: \/_e 71
0
= \/_ (cos— —I—zsmé)
1 0 1-— 0
=6 \/—+ ZOS Ly Z\/%) (trig identities)

el JE® 1= 6)

5 /1
—\/6 64‘2\/%

k=1: 129= \/66(971+”)i = —\/6697” =5 —i.




o Let 0y = arg(z2). Now we will find z such that

2 .
.I‘Q =20=4—17=06 (— — 2—) = 6(COS 02 + 7sin 02) — 66(92+2k7r)z.

(66(92+2k7r)z)1/2 \/—6 2 +km) z
k=0: x3= \/66(7)i

0 0
= \/6 (Cos;2 —H’siné)

1 0 1 —cosf
NG \/ Teosth 2\/ con 2) (trig identities and since sin fy < 0)

:Jg/%

1
k=1: x4= VBelF i — _\/6eF = —\/B+i.

—Z

CDIU!

Therefore the four different roots of this polynomial equation are

Vi+i, —vV5—i, V5—i, —V54+i.

6. (a) Use long division to find the quotient and remainder when z° — 32% + 222 — 2 + 7
is divided by x — 3. Express the result as an equation of the form

(polynomial) = (polynomial) - (quotient) + (remainder).

Solution:
2t + 22 +5
r—3)ad -3t +222 —x+7
x® — 3ot
0+222 -z
2x% — 67
br + 7
5x — 15
22
Therefore,
2° — 32t +22° —x+7=(z - 3)(a* + 22+ 5) +22

(b) Use the Remainder Theorem to find the remainder when

f(x) =1 +i)z* +3ix® + (1 — i)z + 2



is divided by iz — 3 (Do not perform long division!)

Solution: First note that
3 3/—i —3i =3
i (—z) 21 !

f(3/1) = f(=31)
= (144)(=30)* +3i(=3)* + (1 —4)(—3d) + 2
= (1414)(81) + 3i(—27¢*) — 3i + 3i* + 2
=814 81i — 81i* —3i — 342
=81 —81—3+2+4(81—23)
= —1+T78i.

(c) For which value of d is the polynomial 2z — 3 a factor of the polynomial g(x) =

3 — 522 +2x — d?

Solution: We need ¢(3/2) = 0. So, we have

g@ﬂ):(;f—ﬁ(;f+ﬂ(g)—d:0

27 45 (2
[ — _— —d:
: 4<2)+3 0
27_9%0 A%,
8 8 8 B
= _y
8

(d) You are given that (z — 2) and (x + 1) are factors of the polynomial f(z) = «
823 + ha?® + kx + 6. Find h and k.

4

Solution: We need both f(2) and f(—1) to equal zero.

0=f(2)=(2)*—8(2)° + h(2)* + k(2) +6

=16 — 64 +4h +2k +6

= 4h + 2k — 42.
0=f(=1)=(=1)* = 8(=1)* + h(=1)* + k(-1) + 6
=1+8+h—k+6

=h—k+15.

we get

Ak —15) + 2k — 42 = 0

Therefore from the second equation, h = k — 15, and plugging into the first one,




4k — 60+ 2k —42 =10

6k — 102 =10
6k = 102
k=17
h=17—-15=2.

Therefore the only solution is k£ = 17, h = 2.

7. You are given that 2 + i is a zero of the polynomial p(z) = z* — 42 + 922 — 162 + 20.
Write p(z) as a product of linear factors. What are the roots of the equation p(z) = 07

Solution: Since 2 + i is a zero, so is 2 — ¢, and therefore:

(x—2+i)(z—2—-1)=(r—2—19)(x —2+1)
=a2? — 20 +iv — 20 + 4 — 20 — iz + 20 — i
=2 —4dr +4—(—1)
=2 —4r+5

is a factor of p(x).

244

2?2 —4dx +5 )zt — 423 4+ 922 — 162 + 20
xt — 423 + 52

422 — 162 + 20

422 — 16z + 20

Therefore,
ot —42® + 92° — 167 + 20 = (2° — 4o + 5)(2° + 4)

and since z? + 4 = z? — (2i)? = (z — 2i)(z + 24), we have that we can write p(z) as:
plx) =(x—2+1i)(x—(2—1))(x—2i)(x + 2i).
Therefore the roots of p(x) = 0 are

2+4,2 — i, 2, —2i.

8. In each case your response should refer by number to appropriate results in the textbook
as needed.

(a) If a polynomial of degree n with real coefficients does not have n real zeros (count-
ing multiplicity) then it must have an irreducible quadratic factor. Justify this
statement.




Solution: Let f(z) be a polynomial of degree n with real coefficients that does
not have n real zeros (counting multiplicity). The polynomial has n zeros by
Theorem 2.4 (or FTA (II)). Since it does not have n real zeros, it has at least
one zero, say A, that is not real. Then by Theorem 2.5, X is also a zero. Then
by Theorem 2.2, (z — \)(z — \) is an irreducible quadratic factor (since it’s zeros
are not real).

(b) If r is a zero of a polynomial f(z) of multiplicity 5 and a zero of the polynomial
g(x) of multiplicity 7, must it also be a zero of the polynomial h(x) = f(x) + g(z)?
If so, can we determine its multiplicity? If so, what is it? If not, why not?

Solution: Assume 7 is a zero of a polynomial f(z) of multiplicity 5 and a zero
of the polynomial g(z) of multiplicity 7. Then by Theorem 2.4 (or Theorem
2.2), and the definition of "multiplicity”, we can write

fl@)=(z—ryp(x)  and  g(z)=(z—r)q(z)
where p(r) # 0 and ¢(r) # 0. Thus
f(x) +g(x)

(z —7)’p(z) + (z — )7q(x)
(z = 7)°(p(z) + (= — 7)*q(2)).
Thus h(r) = 0 (and so r is a root of h(z) = 0), and the multiplicity is 5, since

we also know that p(r) + (r — r)?q(r) = p(r) # 0. Therefore r is a zero of h(z)
and the multiplicity can be determined to be 5.

h(x)




