
MATH 1210 Assignment 2 Solutions 16R-T1

Attempt all questions and show all your work. Due October 9, 2015.

1. Simplify 169
5+12i

+
(
(1− 2i)3 + 4

)2
and express in Cartesian form.

Solution:

169

5 + 12i
+
(
(1− 2i)3 + 4

)2
=

169

5 + 12i
+
(
(1− 4i+ 4i2)(1− 2i) + 4

)2
=

169

5 + 12i
+
(
(−3− 4i)(1− 2i) + 4

)2
=

169

5 + 12i
+
(
−3 + 6i− 4i+ 8i2 + 4

)2
=

169

5 + 12i
+
(
−11 + 2i+ 4

)2
=

169

5 + 12i
+
(
−7 + 2i

)2
=

169

5 + 12i

(
5− 12i

5− 12i

)
+ (−7− 2i)2

=
169(5− 12i)

25− 144i2
+ (49 + 28i+ 4i2)

=
169(5− 12i)

169
+ 45 + 28i

= 5− 12i+ 45 + 28i

= 50 + 16i.

2. Express in the forms required, with all arguments in your answers reduced to numbers
in the interval (−π, π].

(a) −6 + i
√
108 in polar and exponential forms

Solution:



-6

108

θφ

Let z = −6 + i
√
108.

r2 = (−6)2+(
√
108)2 = 36+108 = 144

and so r = 12.

sinϕ =
√
108
12

= 6
√
3

12
=

√
3
2
. Therefore

ϕ = π
3
, and thus θ = π − ϕ = 2π

3
.

Polar form: z = 12
(
cos 2π

3
+ i sin 2π

3

)
Exponential form: z = 12e

2π
3
i.

(b)
√
18
(
cos 19π

4
+ i sin 19π

4

)
in Cartesian and exponential forms

Solution: Let z =
√
18
(
cos 19π

4
+ i sin 19π

4

)
.

Exponential form: z =
√
18e

19π
4

i.

Cartesian form:

z =
√
18

(
cos

19π

4
+ i sin

19π

4

)
=

√
18

(
cos

3π

4
+ i sin

3π

4

)
=

√
18

(
−
√
2

2
+ i

√
2

2

)

=
−
√
36

2
+ i

√
36

2

=
−6

2
+ i

6

2
= −3 + 3i.

(c) 10e
−5π
6

i in Cartesian and polar forms.

Solution:

10e
−5π
6

i = 10(cos
−5π

6
+ i sin

−5π

6
) (Polar form)

= 10(
−
√
3

2
+

−1

2
i)

= −5
√
3− 5i. (Cartesian form)

3. cosnθ, n ∈ Z, can always be expressed in terms of sin θ and cos θ. For example, cos 3θ =



cos3 θ − 3 cos θ sin2 θ. Use De Moivre’s Theorem to obtain an expression of this type for
cos 7θ.

Solution: Let z = (cos θ + i sin θ). Then

z7 = cos 7θ + i sin 7θ by De Moivre’s Theorem, and

z7 = (cos θ + i sin θ)7

=
7∑

k=0

(
7

k

)
cos7−k θ (i sin θ)k

=

(
7

0

)
cos7 θ +

(
7

1

)
cos6 θ(i sin θ)1 +

(
7

2

)
cos5 θ(i sin θ)2 +

(
7

3

)
cos4 θ(i sin θ)3

+

(
7

4

)
cos3 θ(i sin θ)4 +

(
7

5

)
cos2 θ(i sin θ)5 +

(
7

6

)
cos θ(i sin θ)6 +

(
7

7

)
(i sin θ)7

= cos7 θ + 7i cos6 θ sin θ + 21i2 cos5 θ sin2 θ + 35i3 cos4 θ sin3 θ + 35i4 cos3 θ sin4 θ

+ 21i5 cos2 θ sin5 θ + 7i6 cos θ sin6 θ + i7 sin7 θ

= cos7 θ + 7i cos6 θ sin θ − 21 cos5 θ sin2 θ − 35i cos4 θ sin3 θ + 35 cos3 θ sin4 θ

+ 21i cos2 θ sin5 θ − 7 cos θ sin6 θ − i sin7 θ

=
(
cos7 θ − 21 cos5 θ sin2 θ + 35 cos3 θ sin4 θ − 7 cos θ sin6 θ

)
+ i
(
7 cos6 θ sin θ − 35 cos4 θ sin3 θ + 21 cos2 θ sin5 θ − sin7 θ

)
.

Therefore, equating the real and complex parts of z7 calculated in each of the two
ways, we have:

cos 7θ = cos7 θ − 21 cos5 θ sin2 θ + 35 cos3 θ sin4 θ − 7 cos θ sin6 θ

sin 7θ = 7 cos6 θ sin θ − 35 cos4 θ sin3 θ + 21 cos2 θ sin5 θ − sin7 θ.

4. Find all of the complex 6th roots of −64. Express your answers in Cartesian form.

Solution: Let z be such that z6 = −64 = 64eπi = 64e(2k+1)πi. Then

z =
(
64e(2k+1)πi

)1/6
= 2e

(2k+1)π
6

i.

k = 0 : z = 2e
π
6
i = 2(cos

π

6
+ i sin

π

6
) = 2

(√
3

2
+ i

1

2

)
=

√
3 + i.

k = 1 : z = 2e
π
2
i = 2(cos

π

2
+ i sin

π

2
) = 2(0 + i) = 2i.

k = 2 : z = 2e
5π
6
i = 2(cos

5π

6
+ i sin

5π

6
) = 2(

−
√
3

2
+ i

1

2
) = −

√
3 + i.

k = 3 : z = 2e
7π
6
i = 2(cos

7π

6
+ i sin

7π

6
) = 2(

−
√
3

2
+ i

−1

2
) = −

√
3− i.



k = 4 : z = 2e
3π
2
i = 2(cos

3π

2
+ i sin

3π

2
) = 2(0 + i(−1)) = −2i.

k = 5 : z = 2e
11π
6

i = 2(cos
11π

6
+ i sin

11π

6
) = 2(

√
3

2
+ i

−1

2
) =

√
3− i.

5. Solve the equation x4 − 8x2 + 36 = 0 over the complex numbers.

Solution: We will need two trig identity throughout:

cos
θ

2
=

√
1 + cos θ

2
sin

θ

2
=

√
1− cos θ

2

Let z = x2. Then we have that z2 − 8z + 36 = 0, which we can solve using the
quadratic formula:

z =
8±

√
64− 4(1)(36)

2(1)
=

8±
√
−80

2
= 4± i

√
20.

|z| =
√
42 +

√
20

2
=

√
16 + 20 =

√
36 = 6.

Thus z = 4± i
√
20 = 6

(
4

6
± i

√
20

6
]

)
= 6

(
2

3
± i

√
5

3

)
.

Let z1 = 4 + i
√
20, z2 = 4− i

√
20.

• Let θ1 = arg(z1). First we will find x such that

x2 = z1 = 4 + i = 6

(
2

3
+ i

√
5

3

)
= 6(cos θ1 + i sin θ1) = 6e(θ1+2kπ)i.

Then:

x = (6e(θ1+2kπ)i)1/2 =
√
6e(

θ1
2
+kπ)i.

k = 0 : x1 =
√
6e(

θ1
2
)i

=
√
6

(
cos

θ1
2
+ i sin

θ1
2

)
=

√
6

(√
1 + cos θ1

2
+ i

√
1− cos θ1

2

)
(trig identities)

=
√
6

√1 + (2
3
)

2
+ i

√
1− (2

3
)

2


=

√
6

(√
5

6
+ i

√
1

6

)
=

√
5 + i

k = 1 : x2 =
√
6e(

θ1
2
+π)i = −

√
6e

θ1
2
i = −

√
5− i.



• Let θ2 = arg(z2). Now we will find x such that

x2 = z2 = 4− i = 6

(
2

3
− i

√
5

3

)
= 6(cos θ2 + i sin θ2) = 6e(θ2+2kπ)i.

x = (6e(θ2+2kπ)i)1/2 =
√
6e(

θ2
2
+kπ)i.

k = 0 : x3 =
√
6e(

θ2
2
)i

=
√
6

(
cos

θ2
2
+ i sin

θ2
2

)
=

√
6

(√
1 + cos θ2

2
− i

√
1− cos θ2

2

)
(trig identities and since sin θ2 < 0)

=
√
6

√1 + (2
3
)

2
− i

√
1− (2

3
)

2


=

√
6

(√
5

6
− i

√
1

6

)
=

√
5− i

k = 1 : x4 =
√
6e(

θ2
2
+π)i = −

√
6e

θ2
2
i = −

√
5 + i.

Therefore the four different roots of this polynomial equation are

√
5 + i, −

√
5− i,

√
5− i, −

√
5 + i.

6. (a) Use long division to find the quotient and remainder when x5 − 3x4 + 2x2 − x + 7
is divided by x− 3. Express the result as an equation of the form

(polynomial) = (polynomial) · (quotient) + (remainder).

Solution:
x4 + 2x+ 5

x− 3 ) x5 − 3x4 + 2x2 − x+ 7
x5 − 3x4

0 + 2x2 − x
2x2 − 6x

5x+ 7
5x− 15

22

Therefore,

x5 − 3x4 + 2x2 − x+ 7 = (x− 3)(x4 + 2x+ 5) + 22

(b) Use the Remainder Theorem to find the remainder when

f(x) = (1 + i)x4 + 3ix3 + (1− i)x+ 2



is divided by ix− 3 (Do not perform long division!)

Solution: First note that

3

i
=

3

i

(
−i

−i

)
=

−3i

−i2
=

−3i

1
= −3i.

f(3/i) = f(−3i)

= (1 + i)(−3i)4 + 3i(−3i)3 + (1− i)(−3i) + 2

= (1 + i)(81) + 3i(−27i3)− 3i+ 3i2 + 2

= 81 + 81i− 81i4 − 3i− 3 + 2

= 81− 81− 3 + 2 + i(81− 3)

= −1 + 78i.

(c) For which value of d is the polynomial 2x − 3 a factor of the polynomial g(x) =
x3 − 5x2 + 2x− d?

Solution: We need g(3/2) = 0. So, we have

g(3/2) =

(
3

2

)3

− 5

(
3

2

)2

+ 2

(
3

2

)
− d = 0

27

8
− 45

4

(
2

2

)
+ 3− d = 0

27

8
− 90

8
+

24

8
− d = 0

−39

8
= d.

(d) You are given that (x − 2) and (x + 1) are factors of the polynomial f(x) = x4 −
8x3 + hx2 + kx+ 6. Find h and k.

Solution: We need both f(2) and f(−1) to equal zero.

0 = f(2) = (2)4 − 8(2)3 + h(2)2 + k(2) + 6

= 16− 64 + 4h+ 2k + 6

= 4h+ 2k − 42.

0 = f(−1) = (−1)4 − 8(−1)3 + h(−1)2 + k(−1) + 6

= 1 + 8 + h− k + 6

= h− k + 15.

Therefore from the second equation, h = k−15, and plugging into the first one,
we get

4(k − 15) + 2k − 42 = 0



4k − 60 + 2k − 42 = 0

6k − 102 = 0

6k = 102

k = 17

h = 17− 15 = 2.

Therefore the only solution is k = 17, h = 2.

7. You are given that 2 + i is a zero of the polynomial p(x) = x4 − 4x3 + 9x2 − 16x + 20.
Write p(x) as a product of linear factors. What are the roots of the equation p(x) = 0?

Solution: Since 2 + i is a zero, so is 2− i, and therefore:

(x− (2 + i))(x− (2− i)) = (x− 2− i)(x− 2 + i)

= x2 − 2x+ ix− 2x+ 4− 2i− ix+ 2i− i2

= x2 − 4x+ 4− (−1)

= x2 − 4x+ 5

is a factor of p(x).

x2 + 4

x2 − 4x+ 5 ) x4 − 4x3 + 9x2 − 16x+ 20
x4 − 4x3 + 5x2

4x2 − 16x+ 20
4x2 − 16x+ 20

Therefore,
x4 − 4x3 + 9x2 − 16x+ 20 = (x2 − 4x+ 5)(x2 + 4)

and since x2 + 4 = x2 − (2i)2 = (x− 2i)(x+ 2i), we have that we can write p(x) as:

p(x) = (x− (2 + i))(x− (2− i))(x− 2i)(x+ 2i).

Therefore the roots of p(x) = 0 are

2 + i, 2− i, 2i,−2i.

8. In each case your response should refer by number to appropriate results in the textbook
as needed.

(a) If a polynomial of degree n with real coefficients does not have n real zeros (count-
ing multiplicity) then it must have an irreducible quadratic factor. Justify this
statement.



Solution: Let f(x) be a polynomial of degree n with real coefficients that does
not have n real zeros (counting multiplicity). The polynomial has n zeros by
Theorem 2.4 (or FTA (II)). Since it does not have n real zeros, it has at least
one zero, say λ, that is not real. Then by Theorem 2.5, λ is also a zero. Then
by Theorem 2.2, (x−λ)(x−λ) is an irreducible quadratic factor (since it’s zeros
are not real).

(b) If r is a zero of a polynomial f(x) of multiplicity 5 and a zero of the polynomial
g(x) of multiplicity 7, must it also be a zero of the polynomial h(x) = f(x) + g(x)?
If so, can we determine its multiplicity? If so, what is it? If not, why not?

Solution: Assume r is a zero of a polynomial f(x) of multiplicity 5 and a zero
of the polynomial g(x) of multiplicity 7. Then by Theorem 2.4 (or Theorem
2.2), and the definition of ”multiplicity”, we can write

f(x) = (x− r)5p(x) and g(x) = (x− r)7q(x)

where p(r) ̸= 0 and q(r) ̸= 0. Thus

h(x) = f(x) + g(x)

= (x− r)5p(x) + (x− r)7q(x)

= (x− r)5(p(x) + (x− r)2q(x)).

Thus h(r) = 0 (and so r is a root of h(x) = 0), and the multiplicity is 5, since
we also know that p(r) + (r − r)2q(r) = p(r) ̸= 0. Therefore r is a zero of h(x)
and the multiplicity can be determined to be 5.


