Attempt all questions and show all your work. Due November 13, 2015.

1. Prove using mathematical induction that for any $n \geq 2$, and collection of $n m \times m$ matrices $A_{1}, A_{2}, \ldots, A_{n}$,

$$
\operatorname{det}\left(A_{1} A_{2} \cdots A_{n}\right)=\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{2}\right) \cdots \operatorname{det}\left(A_{n}\right)
$$

2. Prove using mathematical induction that for any $n \geq 1$, the determinant of an uppertriangular $n \times n$ matrix is the product of its diagonal entries.
3. Is it true that for any two matrices A and B,

$$
\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B) ?
$$

If so, prove it. If not, find a counter example.
4. Solve the following system using Cramer's Rule:

$$
\begin{aligned}
x_{1}+3 x_{3} & =-1 \\
-x_{2}+2 x_{3} & =-9 \\
2 x_{1}+x_{2} & =15
\end{aligned}
$$

5. Prove the following property: for all $a, b, c \in \mathbb{R}, a \neq 0, b \neq 0, c \neq 0$,

$$
\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
$$

6. (a) Let $c \in \mathbb{R}$. Prove using mathematical induction that for any $n \geq 1$ and any $n \times n$ matrix $A,|c A|=c^{n}|A|$.
(b) A square matrix is called skew-symmetric if $A^{T}=-A$. Use part (a) and a property of determinants when taking transposes to show that every skew-symmetric 1001×1001 matrix has determinant 0 .
7. An elementary matrix is a matrix which is one elementary row operation away from the identity matrix. For instance,

$$
E_{1}=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right]
$$

are all elementary matrices.
(a) Let k be any real number, $k \neq 0$. Find an elementary matrix with determinant k.
(b) BONUS: 3 MARKS. Let E be an $n \times n$ elementary matrix formed by performing row operation r to the identity I_{n}. Let A be any $n \times n$ matrix. Then the matrix product $E A$ will result in the result of performing r to A. Use this fact, and properties of determinants to formally prove the following theorem: If A is an $n \times n$ matrix such that the row reduced row echelon form of A is I_{n}, then $\operatorname{det}(A) \neq 0$.
8. Let $\mathbf{u}=[1,1,1], \mathbf{v}=[-1,2,5], \mathbf{w}=[0,1,1]$. Calculate each of the following:
(a) $(2 \mathbf{u}+\mathbf{v}) \bullet(\mathbf{v}-3 \mathbf{w})$
(b) $\|\mathbf{u}\|-2\|\mathbf{v}\|+\|(-3) \mathbf{w}\|$
9. Prove the associative rule for addition of vectors in E^{3}

$$
(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})
$$

in the following two different ways:
(a) by writing each of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in terms of their coordinates and simplifying both sides algebraically in coordinate form
(b) by a geometric argument using arrow representations for \mathbf{u}, \mathbf{v}, \mathbf{w}
10. Find the points where the plane $3 x-2 y+5 z=30$ meets each of the x, y and z axes in E^{3}. Use these "intercepts" to provide a neat sketch of the plane.
11. (a) Find an equation for the line through points $(1,3)$ and $(5,4)$ in parametric form.
(b) Find an equation for the line through points $(1,2,3)$ and $(5,5,0)$ in parametric form.

