
MATH 1210 Assignment 4 Solutions 16R-T1

Attempt all questions and show all your work. Due November 13, 2015.

1. Prove using mathematical induction that for any n ≥ 2, and collection of n m × m
matrices A1, A2, . . . , An,

det(A1A2 · · ·An) = det(A1) det(A2) · · · det(An).

Solution: Fix m ≥ 1. For all n ≥ 2, let Pn denote the statement that for any
collection of n m×m matrices A1, A2, . . . , An,

det(A1A2 · · ·An) = det(A1) det(A2) · · · det(An).

Base Case. The statement P2 says that for any collection of 2 m×m matrices A,B,

det(AB) = det(A) det(B).

This is true by Theorem 7.6 in the text.

Inductive Step. Fix k ≥ 2 and suppose that Pk holds, that is, for any collection of k
m×m matrices A1, A2, . . . , Ak,

det(A1A2 · · ·Ak) = det(A1) det(A2) · · · det(Ak).

It remains to show that Pk+1 holds, that is, for any collection of k+1 m×m matrices
A1, A2, . . . , Ak+1,

det(A1A2 · · ·Ak+1) = det(A1) det(A2) · · · det(Ak+1).

Let A1, A2, . . . , Ak+1 be m×m matrices. Then

det(A1A2 · · ·Ak+1) = det( (A1A2 · · ·Ak) Ak+1 )

= det(A1A2 · · ·Ak) det(Ak+1) (by P2)

= det(A1) det(A2) · · · det(Ak) det(Ak+1) (by Pk).

Therefore Pk+1 holds. Thus by PMI, for all n ≥ 2, Pn holds.

2. Prove using mathematical induction that for any n ≥ 1, the determinant of an upper-
triangular n× n matrix is the product of its diagonal entries.

Solution: For any n ≥ 1, let Pn denote the statement that the determinant of every
upper-triangular n× n matrix is the product of its diagonal entries.

Base Case. The statement P1 says that the determinant of every upper-triangular
1 × 1 matrix is the product of its diagonal entries. Every 1 × 1 matrix A = [a1,1]



is upper-triangular, and |A| = a1,1, which is the product of the diagonal entries.
Therefore P1 holds.

Inductive Step. Fix k ≥ 1 and assume that Pk holds, that is, the determinant of every
upper-triangular k × k matrix is the product of its diagonal entries. It remains to
show that Pk+1 holds, that is, the determinant of every upper-triangular k+1×k+1
matrix is the product of its diagonal entries.

Let A = [ai,j]k+1×k+1 be an upper-triangular matrix. First some notation: let Ai,j

denote the matrix formed from A by removing row i and column j.

The last row of A is all zeros, except for the last entry, ak+1,k+1. Therefore expanding
across the bottom row, we have:

|A| =
k+1∑
j=1

ak+1,jCk+1,j

= ak+1,k+1Ck+1,k+1

= ak+1,k+1(−1)k+1+k+1|Ak+1,k+1|
= ak+1,k+1(−1)2k+2|Ak+1,k+1|
= ak+1,k+1|Ak+1,k+1|.

Note that Ak+1,k+1 is a k × k upper-triangular matrix. Therefore by Pk, the deter-
minant of Ak+1,k+1 is the product of the diagonal entries, that is,

|Ak+1,k+1| = a1,1a2,2 · · · ak,k.

Put these together and we get

|A| = ak+1,k+1|Ak+1,k+1| = ak+1,k+1a1,1a2,2 · · · ak,k.

Therefore Pk+1 holds. Thus by PMI, for all n ≥ 1, Pn holds.

3. Is it true that for any two matrices A and B,

det(A+B) = det(A) + det(B)?

If so, prove it. If not, find a counter example.

Solution: No. For instance,∣∣∣∣ 1 0
0 0

∣∣∣∣ = 0,

∣∣∣∣ 0 0
0 1

∣∣∣∣ = 0,

but ∣∣∣∣[ 1 0
0 0

]
+

[
0 0
0 1

]∣∣∣∣ = ∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1 ̸=
∣∣∣∣ 1 0
0 0

∣∣∣∣+ ∣∣∣∣ 0 0
0 1

∣∣∣∣ .



4. Solve the following system using Cramer’s Rule:

x1 + 3x3 = −1
− x2 + 2x3 = −9

2x1 + x2 = 15

Solution:  1 0 3
0 −1 2
2 1 0

 x1

x2

x3

 =

 −1−9
15



A =

 1 0 3
0 −1 2
2 1 0

 , A1 =

 −1 0 3
−9 −1 2
15 1 0


A2 =

 1 −1 3
0 −9 2
2 15 0

 , A3 =

 1 0 −1
0 −1 −9
2 1 15


Then |A| = 4, |A1| = 20, |A2| = 20, and |A3| = −8. Therefore, by Cramer’s rule:

x1 =
|A1|
|A|

=
20

4
= 5

x2 =
|A2|
|A|

=
20

4
= 5

x3 =
|A3|
|A|

=
−8
4

= −2.

5. Prove the following property: for all a, b, c ∈ R, a ̸= 0, b ̸= 0, c ̸= 0,∣∣∣∣∣∣
1 + a 1 1
1 1 + b 1
1 1 1 + c

∣∣∣∣∣∣ = abc

(
1 +

1

a
+

1

b
+

1

c

)
.

Solution:∣∣∣∣∣∣
1 + a 1 1
1 1 + b 1
1 1 1 + c

∣∣∣∣∣∣R2 ← R2 −R1

=

∣∣∣∣∣∣
1 + a 1 1
−a b 0
1 1 1 + c

∣∣∣∣∣∣R3 ← R3 − (1 + c)R1

=

∣∣∣∣∣∣
1 + a 1 1
−a b 0

1− (1 + a)(1 + c) −c 0

∣∣∣∣∣∣



=

∣∣∣∣∣∣
1 + a 1 1
−a b 0

−a− c− ac −c 0

∣∣∣∣∣∣
=

∣∣∣∣ −a b
−a− c− ac −c

∣∣∣∣
= ac− b(−a− c− ac) = ac+ ba+ bc+ abc = abc

(
1 +

1

a
+

1

b
+

1

c

)
.

6. (a) Let c ∈ R. Prove using mathematical induction that for any n ≥ 1 and any n× n
matrix A, |cA| = cn|A|.

Solution: Fix c ∈ R. For all n ≥ 1, let Pn denote the statement that for any
n× n matrix A, |cA| = cn|A|.
Base Case. The statement P1 says that for any 1× 1 matrix A = [a1,1], |cA| =
c|A|.

|cA| = |[ca1,1]| = ca1,1 = c|[a1,1]| = c|A|.

Therefore P1 holds.

Inductive Step. Fix k ≥ 1 and assume that Pk holds, that is, for any k × k

matrix A, |cA| = ck|A|. It remains to show that Pk+1 holds, that is, for any
k + 1× k + 1 matrix A, |cA| = ck+1|A|.
First some notation: let Ai,j denote the matrix formed from A by removing row
i and column j. Then expanding across the first row we have:

|cA| =
k+1∑
j=1

ca1,jC1,j

=
k+1∑
j=1

ca1,j(−1)1+j|(cA)1,j|

=
k+1∑
j=1

ca1,j(−1)1+jck|A1,j| By Pk since (cA)1,j is a k × k matrix

=
k+1∑
j=1

ca1,j(−1)1+jck|A1,j| By Pk since (cA)1,j is a k × k matrix

= ck+1

k+1∑
j=1

a1,j(−1)1+j|A1,j|

= ck+1|A|.

Therefore Pk+1 holds, and thus by PMI, for all n ≥ 1, Pn holds.

(b) A square matrix is called skew-symmetric if AT = −A. Use part (a) and a prop-
erty of determinants when taking transposes to show that every skew-symmetric



1001× 1001 matrix has determinant 0.

Solution: Let A be a skew-symmetric matrix. Then AT = −A. Taking the
determinant of both sides, we get

|AT | = |A|
| − A| = |(−1)A|

= (−1)1001|A|
= −|A|.

Thus |A| = −|A|, and so 2|A| = 0, thus |A| = 0.

7. An elementary matrix is a matrix which is one elementary row operation away from
the identity matrix. For instance,

E1 =

 3 0 0
0 1 0
0 0 1

 , E2 =

 0 1 0
1 0 0
0 0 1

 , E3 =

 1 0 0
0 1 −3
0 0 1


are all elementary matrices.

(a) Let k be any real number, k ̸= 0. Find an elementary matrix with determinant k.

Solution: For any k ̸= 0,

[
k 0
0 1

]
is an elementary matrix (for the row oper-

ation R1 ← kR1), and has determinant k.

(b) BONUS: 3 MARKS. Let E be an n×n elementary matrix formed by performing
row operation r to the identity In. Let A be any n × n matrix. Then the matrix
product EA will result in the result of performing r to A. Use this fact, and
properties of determinants to formally prove the following theorem: If A is an n×n
matrix such that the row reduced row echelon form of A is In, then det(A) ̸= 0.

Solution: Assume A is an n× n matrix with RREF In. Then there exist row
operations r1, r2, . . . , rk such that if we perform them to A (starting with r1
and proceeding in order), we get In. That is, there exist elementary matri-
ces E1, . . . , Ek such that Ek · · ·E2E1A = In. Therefore det(Ek · · ·E2E1A) =
det(In) = 1. But we know from question 1 above that det(Ek · · ·E2E1A) =
det(Ek) · · · det(E1) det(A). Therefore det(A) cannot equal zero (since if it did,
the left hand side would be zero, not 1).

8. Let u = [1, 1, 1], v = [−1, 2, 5], w = [0, 1, 1]. Calculate each of the following:

(a) (2u+ v) • (v− 3w)

Solution:

(2u+ v) • (v− 3w) = (2[1, 1, 1] + [−1, 2, 5]) • ([−1, 2, 5]− 3[0, 1, 1])



= ([2, 2, 2] + [−1, 2, 5]) • ([−1, 2, 5]− [0, 3, 3])

= [1, 4, 7] • [−1,−1, 2]
= −1− 4 + 14 = 9.

(b) ||u|| − 2||v||+ ||(−3)w||

Solution:

||u|| − 2||v||+ ||(−3)w|| = ||[1, 1, 1]|| − 2||[−1, 2, 5]||+ ||(−3)[0, 1, 1]||
=
√
12 + 12 + 12 − 2

√
12 + 22 + 52 + ||[0,−3,−3]||

=
√
3− 2

√
30 +

√
32 + 32

=
√
3− 2

√
30 +

√
18.

9. Prove the associative rule for addition of vectors in E3

(u+ v) +w = u+ (v+w)

in the following two different ways:

(a) by writing each of u, v, w in terms of their coordinates and simplifying both sides
algebraically in coordinate form

Solution: Let u = (a, b, c), v = (d, e, f), w = (x, y, z). Then

(u+ v) +w = ((a, b, c) + (d, e, f)) + (x, y, z)

= (a+ d, b+ e, c+ f) + (x, y, z)

= ((a+ d) + x, (b+ e) + y, (c+ f) + z)

= (a+ (d+ x), b+ (e+ y), c+ (f + z))

= (a, b, c) + (d+ x, e+ y, f + z)

= (a, b, c) + ((d, e, f) + (x, y, z))

= u+ (v+w).

(b) by a geometric argument using arrow representations for u, v, w

Solution:



10. Find the points where the plane 3x− 2y + 5z = 30 meets each of the x, y and z axes in
E3. Use these ”intercepts” to provide a neat sketch of the plane.

Solution: Here are the formulae for the axes:

x-axis: x = (t, 0, 0), t ∈ R

y-axis: x = (0, t, 0), t ∈ R

z-axis: x = (0, 0, t), t ∈ R

So to find the intersection of this plane and the x-axis, just plug in y = z = 0:

3x = 30 =⇒ x = 10 =⇒ (10, 0, 0)

Similarly,
−2y = 30 =⇒ y = −15 =⇒ (0,−15, 0)

5z = 30 =⇒ z = 6 =⇒ (0, 0, 6)

Therefore we have the following plane:



11. (a) Find an equation for the line through points (1, 3) and (5, 4) in parametric form.

Solution: The vector v = (5, 4) − (1, 3) = (4, 1) is along the line. Therefore
the line in point-parallel form is:

x = (1, 3) + t(4, 1), t ∈ R

which in parametric form becomes

x = 1 + 4t, y = 3 + t, t ∈ R.

(b) Find an equation for the line through points (1, 2, 3) and (5, 5, 0) in parametric
form.

Solution: The vector v = (5, 5, 0) − (1, 2, 3) = (4, 3,−3) is along the line.
Therefore the line in point-parallel form is:

x = (5, 5, 0) + t(4, 3,−3), t ∈ R

which in parametric form becomes

x = 5 + 4t, y = 5 + 3t, z = −3t, t ∈ R.


