Attempt all questions and show all your work. Due November 13, 2015.

1. Prove using mathematical induction that for any $n \geq 2$, and collection of $n m \times m$ matrices $A_{1}, A_{2}, \ldots, A_{n}$,

$$
\operatorname{det}\left(A_{1} A_{2} \cdots A_{n}\right)=\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{2}\right) \cdots \operatorname{det}\left(A_{n}\right)
$$

Solution: Fix $m \geq 1$. For all $n \geq 2$, let P_{n} denote the statement that for any collection of $n m \times m$ matrices $A_{1}, A_{2}, \ldots, A_{n}$,

$$
\operatorname{det}\left(A_{1} A_{2} \cdots A_{n}\right)=\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{2}\right) \cdots \operatorname{det}\left(A_{n}\right)
$$

Base Case. The statement P_{2} says that for any collection of $2 m \times m$ matrices A, B,

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

This is true by Theorem 7.6 in the text.
Inductive Step. Fix $k \geq 2$ and suppose that P_{k} holds, that is, for any collection of k $m \times m$ matrices $A_{1}, A_{2}, \ldots, A_{k}$,

$$
\operatorname{det}\left(A_{1} A_{2} \cdots A_{k}\right)=\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{2}\right) \cdots \operatorname{det}\left(A_{k}\right)
$$

It remains to show that P_{k+1} holds, that is, for any collection of $k+1 m \times m$ matrices $A_{1}, A_{2}, \ldots, A_{k+1}$,

$$
\operatorname{det}\left(A_{1} A_{2} \cdots A_{k+1}\right)=\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{2}\right) \cdots \operatorname{det}\left(A_{k+1}\right)
$$

Let $A_{1}, A_{2}, \ldots, A_{k+1}$ be $m \times m$ matrices. Then

$$
\begin{aligned}
\operatorname{det}\left(A_{1} A_{2} \cdots A_{k+1}\right) & =\operatorname{det}\left(\left(A_{1} A_{2} \cdots A_{k}\right) A_{k+1}\right) & & \\
& =\operatorname{det}\left(A_{1} A_{2} \cdots A_{k}\right) \operatorname{det}\left(A_{k+1}\right) & & \left(\text { by } P_{2}\right) \\
& =\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{2}\right) \cdots \operatorname{det}\left(A_{k}\right) \operatorname{det}\left(A_{k+1}\right) & & \left(\text { by } P_{k}\right)
\end{aligned}
$$

Therefore P_{k+1} holds. Thus by PMI, for all $n \geq 2, P_{n}$ holds.
2. Prove using mathematical induction that for any $n \geq 1$, the determinant of an uppertriangular $n \times n$ matrix is the product of its diagonal entries.

Solution: For any $n \geq 1$, let P_{n} denote the statement that the determinant of every upper-triangular $n \times n$ matrix is the product of its diagonal entries.
Base Case. The statement P_{1} says that the determinant of every upper-triangular 1×1 matrix is the product of its diagonal entries. Every 1×1 matrix $A=\left[a_{1,1}\right]$
is upper-triangular, and $|A|=a_{1,1}$, which is the product of the diagonal entries. Therefore P_{1} holds.
Inductive Step. Fix $k \geq 1$ and assume that P_{k} holds, that is, the determinant of every upper-triangular $k \times k$ matrix is the product of its diagonal entries. It remains to show that P_{k+1} holds, that is, the determinant of every upper-triangular $k+1 \times k+1$ matrix is the product of its diagonal entries.

Let $A=\left[a_{i, j}\right]_{k+1 \times k+1}$ be an upper-triangular matrix. First some notation: let $A_{i, j}$ denote the matrix formed from A by removing row i and column j.
The last row of A is all zeros, except for the last entry, $a_{k+1, k+1}$. Therefore expanding across the bottom row, we have:

$$
\begin{aligned}
|A| & =\sum_{j=1}^{k+1} a_{k+1, j} C_{k+1, j} \\
& =a_{k+1, k+1} C_{k+1, k+1} \\
& =a_{k+1, k+1}(-1)^{k+1+k+1}\left|A_{k+1, k+1}\right| \\
& =a_{k+1, k+1}(-1)^{2 k+2}\left|A_{k+1, k+1}\right| \\
& =a_{k+1, k+1}\left|A_{k+1, k+1}\right|
\end{aligned}
$$

Note that $A_{k+1, k+1}$ is a $k \times k$ upper-triangular matrix. Therefore by P_{k}, the determinant of $A_{k+1, k+1}$ is the product of the diagonal entries, that is,

$$
\left|A_{k+1, k+1}\right|=a_{1,1} a_{2,2} \cdots a_{k, k}
$$

Put these together and we get

$$
|A|=a_{k+1, k+1}\left|A_{k+1, k+1}\right|=a_{k+1, k+1} a_{1,1} a_{2,2} \cdots a_{k, k}
$$

Therefore P_{k+1} holds. Thus by PMI, for all $n \geq 1, P_{n}$ holds.
3. Is it true that for any two matrices A and B,

$$
\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B) ?
$$

If so, prove it. If not, find a counter example.

Solution: No. For instance,

$$
\left|\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right|=0, \quad\left|\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right|=0
$$

but

$$
\left|\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right|=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1 \neq\left|\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right|+\left|\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right| .
$$

4. Solve the following system using Cramer's Rule:

$$
\begin{aligned}
x_{1}+3 x_{3} & =-1 \\
-x_{2}+2 x_{3} & =-9 \\
2 x_{1}+x_{2} & =15
\end{aligned}
$$

Solution:

$$
\begin{array}{llrl}
{\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & 2 \\
2 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]} & =\left[\begin{array}{c}
-1 \\
-9 \\
15
\end{array}\right] \\
A & =\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & 2 \\
2 & 1 & 0
\end{array}\right], & A_{1}=\left[\begin{array}{ccc}
-1 & 0 & 3 \\
-9 & -1 & 2 \\
15 & 1 & 0
\end{array}\right] \\
A_{2}=\left[\begin{array}{ccc}
1 & -1 & 3 \\
0 & -9 & 2 \\
2 & 15 & 0
\end{array}\right], & A_{3}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & -1 & -9 \\
2 & 1 & 15
\end{array}\right]
\end{array}
$$

Then $|A|=4,\left|A_{1}\right|=20,\left|A_{2}\right|=20$, and $\left|A_{3}\right|=-8$. Therefore, by Cramer's rule:

$$
\begin{aligned}
& x_{1}=\frac{\left|A_{1}\right|}{|A|}=\frac{20}{4}=5 \\
& x_{2}=\frac{\left|A_{2}\right|}{|A|}=\frac{20}{4}=5 \\
& x_{3}=\frac{\left|A_{3}\right|}{|A|}=\frac{-8}{4}=-2 .
\end{aligned}
$$

5. Prove the following property: for all $a, b, c \in \mathbb{R}, a \neq 0, b \neq 0, c \neq 0$,

$$
\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) .
$$

Solution:

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right| R_{2} \leftarrow R_{2}-R_{1} \\
& =\left|\begin{array}{ccc}
1+a & 1 & 1 \\
-a & b & 0 \\
1 & 1 & 1+c
\end{array}\right| R_{3} \leftarrow R_{3}-(1+c) R_{1} \\
& =\left|\begin{array}{ccc}
1+a & 1 & 1 \\
-a & b & 0 \\
1-(1+a)(1+c) & -c & 0
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
1+a & 1 & 1 \\
-a & b & 0 \\
-a-c-a c & -c & 0
\end{array}\right| \\
& =\left|\begin{array}{cc}
-a & b \\
-a-c-a c & -c
\end{array}\right| \\
& =a c-b(-a-c-a c)=a c+b a+b c+a b c=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) .
\end{aligned}
$$

6. (a) Let $c \in \mathbb{R}$. Prove using mathematical induction that for any $n \geq 1$ and any $n \times n$ $\operatorname{matrix} A,|c A|=c^{n}|A|$.

Solution: Fix $c \in \mathbb{R}$. For all $n \geq 1$, let P_{n} denote the statement that for any $n \times n$ matrix $A,|c A|=c^{n}|A|$.
$\underline{\text { Base Case. The statement } P_{1} \text { says that for any } 1 \times 1 \text { matrix } A=\left[a_{1,1}\right],|c A|=}$ $c|A|$.

$$
|c A|=\left|\left[c a_{1,1}\right]\right|=c a_{1,1}=c\left|\left[a_{1,1}\right]\right|=c|A| .
$$

Therefore P_{1} holds.
Inductive Step. Fix $k \geq 1$ and assume that P_{k} holds, that is, for any $k \times k$ $\overline{\text { matrix } A,|c A|}=c^{k}|A|$. It remains to show that P_{k+1} holds, that is, for any $k+1 \times k+1$ matrix $A,|c A|=c^{k+1}|A|$.
First some notation: let $A_{i, j}$ denote the matrix formed from A by removing row i and column j. Then expanding across the first row we have:

$$
\begin{aligned}
|c A| & =\sum_{j=1}^{k+1} c a_{1, j} C_{1, j} \\
& =\sum_{j=1}^{k+1} c a_{1, j}(-1)^{1+j}\left|(c A)_{1, j}\right| \\
& =\sum_{j=1}^{k+1} c a_{1, j}(-1)^{1+j} c^{k}\left|A_{1, j}\right| \quad \text { By } P_{k} \text { since }(c A)_{1, j} \text { is a } k \times k \text { matrix } \\
& =\sum_{j=1}^{k+1} c a_{1, j}(-1)^{1+j} c^{k}\left|A_{1, j}\right| \quad \text { By } P_{k} \text { since }(c A)_{1, j} \text { is a } k \times k \text { matrix } \\
& =c^{k+1} \sum_{j=1}^{k+1} a_{1, j}(-1)^{1+j}\left|A_{1, j}\right| \\
& =c^{k+1}|A| .
\end{aligned}
$$

Therefore P_{k+1} holds, and thus by PMI, for all $n \geq 1, P_{n}$ holds.
(b) A square matrix is called skew-symmetric if $A^{T}=-A$. Use part (a) and a property of determinants when taking transposes to show that every skew-symmetric
1001×1001 matrix has determinant 0 .
Solution: Let A be a skew-symmetric matrix. Then $A^{T}=-A$. Taking the determinant of both sides, we get

$$
\begin{aligned}
\left|A^{T}\right| & =|A| \\
|-A| & =|(-1) A| \\
& =(-1)^{1001}|A| \\
& =-|A| .
\end{aligned}
$$

Thus $|A|=-|A|$, and so $2|A|=0$, thus $|A|=0$.
7. An elementary matrix is a matrix which is one elementary row operation away from the identity matrix. For instance,

$$
E_{1}=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{2}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right]
$$

are all elementary matrices.
(a) Let k be any real number, $k \neq 0$. Find an elementary matrix with determinant k.

Solution: For any $k \neq 0,\left[\begin{array}{cc}k & 0 \\ 0 & 1\end{array}\right]$ is an elementary matrix (for the row operation $R_{1} \leftarrow k R_{1}$), and has determinant k.
(b) BONUS: 3 MARKS. Let E be an $n \times n$ elementary matrix formed by performing row operation r to the identity I_{n}. Let A be any $n \times n$ matrix. Then the matrix product $E A$ will result in the result of performing r to A. Use this fact, and properties of determinants to formally prove the following theorem: If A is an $n \times n$ matrix such that the row reduced row echelon form of A is I_{n}, then $\operatorname{det}(A) \neq 0$.

Solution: Assume A is an $n \times n$ matrix with RREF I_{n}. Then there exist row operations $r_{1}, r_{2}, \ldots, r_{k}$ such that if we perform them to A (starting with r_{1} and proceeding in order), we get I_{n}. That is, there exist elementary matrices E_{1}, \ldots, E_{k} such that $E_{k} \cdots E_{2} E_{1} A=I_{n}$. Therefore $\operatorname{det}\left(E_{k} \cdots E_{2} E_{1} A\right)=$ $\operatorname{det}\left(I_{n}\right)=1$. But we know from question 1 above that $\operatorname{det}\left(E_{k} \cdots E_{2} E_{1} A\right)=$ $\operatorname{det}\left(E_{k}\right) \cdots \operatorname{det}\left(E_{1}\right) \operatorname{det}(A)$. Therefore $\operatorname{det}(A)$ cannot equal zero (since if it did, the left hand side would be zero, not 1).
8. Let $\mathbf{u}=[1,1,1], \mathbf{v}=[-1,2,5], \mathbf{w}=[0,1,1]$. Calculate each of the following:
(a) $(2 \mathbf{u}+\mathbf{v}) \bullet(\mathbf{v}-3 \mathbf{w})$

Solution:

$$
(2 \mathbf{u}+\mathbf{v}) \bullet(\mathbf{v}-3 \mathbf{w})=(2[1,1,1]+[-1,2,5]) \bullet([-1,2,5]-3[0,1,1])
$$

$$
\begin{aligned}
& =([2,2,2]+[-1,2,5]) \bullet([-1,2,5]-[0,3,3]) \\
& =[1,4,7] \bullet[-1,-1,2] \\
& =-1-4+14=9
\end{aligned}
$$

(b) $\|\mathbf{u}\|-2\|\mathbf{v}\|+\|(-3) \mathbf{w}\|$

Solution:

$$
\begin{aligned}
\|\mathbf{u}\|-2\|\mathbf{v}\|+\|(-3) \mathbf{w}\| & =\|[1,1,1]\|-2\|[-1,2,5]\|+\|(-3)[0,1,1]\| \\
& =\sqrt{1^{2}+1^{2}+1^{2}}-2 \sqrt{1^{2}+2^{2}+5^{2}}+\|[0,-3,-3]\| \\
& =\sqrt{3}-2 \sqrt{30}+\sqrt{3^{2}+3^{2}} \\
& =\sqrt{3}-2 \sqrt{30}+\sqrt{18} .
\end{aligned}
$$

9. Prove the associative rule for addition of vectors in E^{3}

$$
(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})
$$

in the following two different ways:
(a) by writing each of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in terms of their coordinates and simplifying both sides algebraically in coordinate form

Solution: Let $\mathbf{u}=(a, b, c), \mathbf{v}=(d, e, f), \mathbf{w}=(x, y, z)$. Then

$$
\begin{aligned}
(\mathbf{u}+\mathbf{v})+\mathbf{w} & =((a, b, c)+(d, e, f))+(x, y, z) \\
& =(a+d, b+e, c+f)+(x, y, z) \\
& =((a+d)+x,(b+e)+y,(c+f)+z) \\
& =(a+(d+x), b+(e+y), c+(f+z)) \\
& =(a, b, c)+(d+x, e+y, f+z) \\
& =(a, b, c)+((d, e, f)+(x, y, z)) \\
& =\mathbf{u}+(\mathbf{v}+\mathbf{w}) .
\end{aligned}
$$

(b) by a geometric argument using arrow representations for $\mathbf{u}, \mathbf{v}, \mathbf{w}$

Solution:

10. Find the points where the plane $3 x-2 y+5 z=30$ meets each of the x, y and z axes in E^{3}. Use these "intercepts" to provide a neat sketch of the plane.

Solution: Here are the formulae for the axes:

$$
\begin{array}{ll}
x \text {-axis: } & \mathbf{x}=(t, 0,0), t \in \mathbb{R} \\
y \text {-axis: } & \mathbf{x}=(0, t, 0), t \in \mathbb{R} \\
z \text {-axis: } & \mathbf{x}=(0,0, t), t \in \mathbb{R}
\end{array}
$$

So to find the intersection of this plane and the x-axis, just plug in $y=z=0$:

$$
3 x=30 \Longrightarrow x=10 \Longrightarrow(10,0,0)
$$

Similarly,

$$
\begin{gathered}
-2 y=30 \Longrightarrow y=-15 \Longrightarrow(0,-15,0) \\
5 z=30 \Longrightarrow z=6 \Longrightarrow(0,0,6)
\end{gathered}
$$

Therefore we have the following plane:

11. (a) Find an equation for the line through points $(1,3)$ and $(5,4)$ in parametric form.

Solution: The vector $\mathbf{v}=(5,4)-(1,3)=(4,1)$ is along the line. Therefore the line in point-parallel form is:

$$
\mathbf{x}=(1,3)+t(4,1), t \in \mathbb{R}
$$

which in parametric form becomes

$$
x=1+4 t, \quad y=3+t, t \in \mathbb{R} .
$$

(b) Find an equation for the line through points $(1,2,3)$ and $(5,5,0)$ in parametric form.

Solution: The vector $\mathbf{v}=(5,5,0)-(1,2,3)=(4,3,-3)$ is along the line. Therefore the line in point-parallel form is:

$$
\mathbf{x}=(5,5,0)+t(4,3,-3), t \in \mathbb{R}
$$

which in parametric form becomes

$$
x=5+4 t, \quad y=5+3 t, \quad z=-3 t, t \in \mathbb{R}
$$

