
MATH 1210 Assignment 5 Solutions 16R-T1

Attempt all questions and show all your work. Due December 7, 2015.

1. Let Q(1, 3,−2) be a point in xyz-space, P1 : x− y + 2z = 1 and P2 : 2x + y + z = 4 be
two planes in xyz-space.

(a) Find an equation of the plane through Q that is parallel to P1.

Solution: If the planes are parallel, then they have the same normal vector, so
the normal to the plane we seek is (1,−1, 2) and the plane equation takes the
form x− y + 2z = d, where the value of d is such that Q belongs to the plane.
Substituting the coordinates of Q, i.e., (1, 3,−2), for (x, y, z), we have

(1)− (3) + 2(−2) = d⇔ d = −6

and thus the equation we seek is x− y + 2z = −6.

(b) Find an equation of the plane through Q and perpendicular to the line of the
intersection of P1 and P2.

Solution: First, we seek the line of intersection of P1 and P2:[
1 −1 2 1
2 1 1 4

]
R2←R2−2R1→

[
1 −1 2 1
0 3 −3 2

]
R2←R2/3→

[
1 −1 2 1
0 1 −1 2/3

]
R1←R1+R2→

[
1 0 1 5/3
0 1 −1 2/3

]
.

Thus, for z = t ∈ R, x = 5/3 − t and y = 2/3 + t, i.e., (x, y, z) = (−1, 1, 1)t +
(5/3, 2/3, 0). The plane we seek is perpendicular to this line, i.e., has the direc-
tion of this line, (−1, 1, 1), as its normal vector. We can then proceed using the
point normal form or, as we will, as in part (a): the plane we seek has equation
−x + y + z = d and contains the point Q, so substituting the coordinates of Q
gives us d:

−(1) + (3) + (−2) = d⇔ d = 0.

Thus the plane has equation −x + y + z = 0.

2. Let P1 = (1,−1, 2), P2 = (2, 0, 4) and P3 = (4, 0, 3) be three points in xyz-space.

(a) Is the triangle determined by those points a right triangle? Explain your answer.

Solution: If the triangle is a right triangle, then two of
−−→
P1P2,

−−→
P1P3 and

−−→
P2P3

must be perpendicular. We know that for two nonzero vectors a, b, a ⊥ b ⇔
a · b = 0. We have

−−→
P1P2 = (1, 1, 2),

−−→
P1P3 = (3, 1, 1) and

−−→
P2P3 = (2, 0,−1),

so

−−→
P1P2·

−−→
P1P3 = 3+1+2 = 6,

−−→
P1P2·

−−→
P2P3 = 2−2 = 0 and

−−→
P1P3·

−−→
P2P3 = 6−1 = 5.



Thus
−−→
P1P2 ⊥

−−→
P1P3 and the triangle P1P2P3 is a right triangle with right angle

at P3.

(b) Find an equation of the plane containing P1, P2 and P3.

Solution: The normal to the plane we seek is perpendicular to the cross product

of any pair of the vectors
−−→
P1P2,

−−→
P1P3 and

−−→
P2P3. We take for instance

−−→
P1P2 and−−→

P2P3 [the latter has a zero coordinate that will make computations easier]:

−−→
P1P2 ×

−−→
P2P3 =

∣∣∣∣∣∣
~i ~j ~k
1 1 2
2 0 −1

∣∣∣∣∣∣ = (−1, 5,−2).

Thus the plane has equation −x + 5y − 2z = d or, to get rid of some minus
signs, x − 5y + 2z = e, where we seek the value of e by noting that the plane
equation must hold for any of P1, P2 or P3. Take P2, for instance:

(2)− 5(0) + 2(4) = e⇔ e = 6,

so the equation of the plane is x− 5y + 2z = 6.

3. Find the inverse of the matrix or explain why the inverse does not exists.

(a) A =

1 2 3
2 5 3
1 0 8


Solution: Compute det(A) by expanding along the bottom row:

det(A) =

∣∣∣∣2 3
5 3

∣∣∣∣+ 8

∣∣∣∣1 2
2 5

∣∣∣∣ = 6− 15 + 40− 32 = −1,

so A is invertible. We compute the inverse using the adjugate. The matrix of
cofactors is

C =

 40 −13 −5
−16 5 2
−9 3 1

 ,

so

A−1 =
1

det(A)
CT =

−40 16 9
13 −5 −3
5 −2 −1

 .

(b) B =

−1 3 −4
2 4 1
−4 2 −9





Solution: We have

det(B) =

∣∣∣∣∣∣
−1 3 −4
2 4 1
−4 2 −9

∣∣∣∣∣∣ R2←R2+2R1=
R3←R3−4R1

∣∣∣∣∣∣
−1 3 −4
0 10 −7
0 −10 7

∣∣∣∣∣∣
and thus det(B) = 0 since the third row is a multiple of the second (and thus
adding, for instance, row 2 to row 3, would lead to a row of zeros). So B is not
invertible.

4. Find all values of c, if any, for which the matrix A =

c 1 0
1 c 1
0 1 c

 is invertible.

Solution: A is invertible iff its determinant is nonzero. Expanding along, say, the
first row, we find

det(A) = c

∣∣∣∣c 1
1 c

∣∣∣∣− ∣∣∣∣1 1
0 c

∣∣∣∣ = c(c2 − 1)− c = c(c2 − 2).

Therefore, A is invertible iff c 6= 0 and c2 − 2 6= 0, i.e., c 6= 0, c 6=
√

2 and c 6= −
√

2.

5. Show that if A is invertible, then det(A−1) = det(A)−1. Deduce a formula for the
determinant of 4A−1, when A is an invertible n× n-matrix.

Solution: If A is invertible, then A−1 exists such that AA−1 = I. Take the deter-
minant of both sides and use the fact that det(AB) = det(A) det(B):

det(AA−1) = det(I)⇔ det(A) det(A−1) = det(I)⇔ det(A) det(A−1) = 1

and thus, dividing both sides of the latter equality by det(A),

det(A−1) = det(A)−1.

Recall that if all entries in a row of A are multiplied by some constant k, then the
determinant of A is multiplied by k. So, if A is n×n, if all entries of A are multiplied
by k, then the determinant of A is multiplied by kn. Therefore,

det(4A−1) = 4n det(A−1) =
4n

det(A)
.

6. Let

A =

1 0 1
4 1 2
0 3 −1

 and B =

 1 0 0 1 −1
2 1 4 1 0
−1 3 4 1 6

 .

Evaluate each of the following:



(a) The (2,3) cofactor of A.

Solution: c23 = −m23 = −3.

(b) The 3rd row of BTA.

Solution: The third row of BTA comes from multiplying the third row of BT

by the successive columns of A. We have

(
0 4 4

)1 0 1
4 1 2
0 3 −1

 =
(
16 16 4

)
.

(c) det(2(A−1)T ).

Solution: We have det(2(A−1)T ) = 23 det((A−1)T ) = 8 det(A−1) = 8/ det(A)
and

det(A) =

∣∣∣∣1 2
3 −1

∣∣∣∣+

∣∣∣∣4 1
0 3

∣∣∣∣ = −7 + 12 = 5.

Thus det(2(A−1)T ) = 8/5.

7. Writing the system
x1 +x3 = 4
2x1 +3x2 +5x3 = −3
x1 +2x3 = 0

as Ax = b,

(a) find the inverse matrix A−1;

Solution: The matrix takes the form

A =

1 0 1
2 3 5
1 0 2

 .

We compute the determinant by expanding along the second column:

det(A) = 3

∣∣∣∣1 1
1 2

∣∣∣∣ = 3,

so the matrix A is invertible. We invert it, for example, by row reduction. We
have

[A|I] =

 1 0 1 1 0 0
2 3 5 0 1 0
1 0 2 0 0 1

 R2←R2−2R1→
R3←R3−R1

 1 0 1 1 0 0
0 3 3 −2 1 0
0 0 1 −1 0 1


R1←R1−R3→
R2←R2−3R1

 1 0 0 2 0 −1
0 3 0 1 1 −3
0 0 1 −1 0 1

 R2←R2/3→

 1 0 0 2 0 −1
0 1 0 1

3
1
3
−1

0 0 1 −1 0 1

 = [I|A−1].



(b) find the solution to the system ATx = b by using (a).

Solution: Since det(A) = det(AT ), the system ATx = b has the unique so-
lution x = (AT )−1b. Recall that (AT )−1 = (A−1)T . [Indeed, suppose A is
invertible. Then AT (A−1)T = (A−1A)T = IT = I, thus the inverse of AT is
(A−1)T .]

Thus

x = (AT )−1b = (A−1)Tb =

 2 0 −1
1
3

1
3
−1

−1 0 1

 4
−3
0

 =

 8
1
3

−4

 .

8. Let

A =

0 0 1
1 1 0
1 2 1

 .

(a) Calculate det(A). Is A invertible? Explain.

Solution: Expanding along the top row, we get

det(A) =

∣∣∣∣1 1
1 2

∣∣∣∣ = 1,

so A is invertible since its determinant is nonzero.

(b) If A is invertible, find A−1 by using the row reduction method.

Solution: We have

[A|I] =

 0 0 1 1 0 0
1 1 0 0 1 0
1 2 1 0 0 1

 R1↔R2→

 1 1 0 0 1 0
0 0 1 1 0 0
1 2 1 0 0 1


R2↔R3→

 1 1 0 0 1 0
1 2 1 0 0 1
0 0 1 1 0 0

 R2←R2−R1→

 1 1 0 0 1 0
0 1 1 0 −1 1
0 0 1 1 0 0


R2←R2−R3→

 1 1 0 0 1 0
0 1 0 −1 −1 1
0 0 1 1 0 0

 R1←R1−R2→

 1 0 0 1 2 −1
0 1 0 −1 −1 1
0 0 1 1 0 0


= [I|A−1],

i.e.,

A−1 =

 1 2 −1
−1 −1 1
1 0 0


.

9. Let T : R3 → R3 be the linear transformation that reflects any vector about the xz-plane
then multiplies its length by h 6= 0. Find the value of h so that the vector (2, 4, 3) is the
image through T of the vector

(
−2

3
, 4
3
,−1

)
.



Solution: First, the reflection about the xz-plane acts on~i,~j,~k as follows: T (~i) =~i,

T (~j) = −~j and T (~k) = ~k. Multiplying the length of the image by h then results in

the following action: T (~i) = h~i, T (~j) = −h~j and T (~k) = h~k. As a consequence, the
matrix A associated to the linear transformation takes the form

A =

h 0 0
0 −h 0
0 0 h

 .

We are told that
(2, 4, 3) = T (−2/3, 4/3,−1),

or, in other words,

A

−2
3

4
3

−1

 =

2
4
3

 .

Thus

−2

3
h = 2

−4

3
h = 4

−h = 3,

so clearly, h = −3. [Which means that there is an additional reflection about the
origin.]


