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1.[7] Let A =

[
i i

0 i

]
where i is the complex number for which i2 = −1 . Use mathematical

induction to prove that

A(2n) =

[
(−1)n (−1)n(2n)

0 (−1)n

]
for all positive integers n ≥ 1.
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2.[9] Consider the polynomial equation of P (x) = 0 where

P (x) = x4 − 2x3 − x+ 2 .

(a) What are the number of the possible positive and negative zeros of P (x) ?

(b) Find all the zeros of P (x) .
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3.[10] Consider the two planes Π1; 3x+ 2y + 3z = 1 and Π2; 7x+ 5y + 9z = 4 .

(a) Is the plane Π1 perpendicular to the plane Π2 ? Why?

(b) Find parametric equations of the line through the point (2, 1, 0) and parallel to the

line 3x+ 2y + 3z = 1 , 7x+ 5y + 9z = 4 .
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4.[11] For the following homogeneous linear system of equations, first find reduced row echelon

form of the augmented matrix and then find all basic solutions of the system.

5x1 + 10x2 +2x3 −7x5 + x6 = 0

2x1 + 4x2 +x3 −3x5 + x6 = 0

7x1 + 14x2 + 2x4 −9x5 − x6 = 0
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5.[6] Let A =

8a −1 0

−1 1 −1

−a −2a 3a

 . Find all values of “a” for which the matrix A is invertible.
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6.[8] Use Cramer’s rule to solve the following linear system of equations for z only .

(Do not solve it for x , y and u )

x+ 3y − u = 4

7x+ y = 2

5x− z = 0

−x+ 2y + 4z = 1
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7.[10] Let A =

 1 4 1

0 3 1

−1 −6 −2

 . First find A−1 and then use it to solve the linear system

AT

xy
z

 =

4

5

0

 .
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8.[10] Let u =< 1, 4, 0,−1 > , v =< 1,−6, 2,−1 > , and w =< 0, 5,−1, 0 > . First show

that the vectors u , v , and w are linearly dependent and then write w as a linear

combination of u , and v .
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9.[8] Let T : R3 → R3 be a linear transformation such that T (2 î) =

4

0

8

 , T (−ĵ) =

1

1

3

 ,

and T (
1

3
k̂) =

 2

1

−1

 . First find the matrix associated with T , and then use it to find

the image of the vector u =

0

1

1

 under T .
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10.[11] Let A =

1 0 −1

0 1 0

2 0 −1

 .

(a) Find all eigenvalues of A .

(b) Given that λ = i is an eigenvalue of A , find all corresponding eigenvectors.
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