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1. (a)[3] Write
(
1 + 6(12)

)
+
(
1 + 6(22)

)
+
(
1 + 6(32)

)
+ . . .+

(
1 + (6n2 − 12n+ 6)

)
in

sigma notation.

(b)[6] Evaluate the sum
18∑

j=10

[4(j−6)3 + 10] using any of the following identities that you

may find relevant.

m∑
k=1

k =
1

2
[m(m+ 1)] ,

m∑
k=1

k2 =
1

6
[m(m+ 1)(2m+ 1)] ,

m∑
k=1

k3 =
1

4
[m2(m+ 1)2]
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2.[8] Find all of the third roots of −125 in Cartesian form and simplify as much as possible.
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3. Let P (x) = x4 − x3 + x2 + 6x− 4 .

(a)[6] Prove that P (1 +
√

3i) = 0 . Show your work.

(b)[6] Use part (a) to find all zeros of P (x) .
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4.[10] Use Cramer’s rule to find the solution of the system

5x −2y +z = 0

−x +2y −z = −1

y +2z = 0
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5.[10] Find all basic solutions of the homogeneous system

6x1 +3x2 +12x3 −3x4 = 0

5x1 +3x2 +11x3 −3x4 +2x5 = 0

2x1 +2x3 +x4 −7x5 = 0
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6.[6] Let A =

 2 0 4

0 −2 4

−1 3 4

 and B =

3 −2 2

1 1 4

0 −2 −4

 . Determine whether the columns of

the matrix AB are linearly independent or linearly dependent. Show your work.
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7. Let A =

5 −1 3

1 0 1

0 1 1

, B =

2 5 −3

0 0 1

0 2 0

, and b =

2

2

0

.

(a)[7] Compute A−1, if possible.

(b)[7] Compute B−1 using the Adjoint method.

(c)[3] Solve either Ax = b or Bx = b. Do NOT solve both.
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8.[7] Let T : R3 → R3 be the function defined by

T

xy
z

 =

xy + z

x

y

 .

Prove that T is not a linear transformation. Show your work.
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9. Let T : R2 → R2 be the linear transformation that first rotates vectors
3π

4
radians

counter clockwise about the origin and then reflects the resulting vector across

the x-axis.

(a)[8] Find the matrix associated with T .

(b)[2] What is the result of applying the linear transformation T−1 to the vector

(
2

1

)
?
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10. Let A =

 2 0 0

−2 −2 2

−5 −10 7

.

(a)[8] Find the eigenvalues of A. For each eigenvalue λ, find an eigenvector that corre-

sponds to λ.

(b)[3] Let v be one of the eigenvectors from part (a). Compute A5v.



DATE: December 16, 2017,

DEPARTMENT & COURSE NO: MATH 1210

EXAMINATION: Techniques of Classical and Linear Algebra

EXAMINERS: Moghaddam, Ramsey, Szestopalow

UNIVERSITY OF MANITOBA

FINAL EXAMINATION

PAGE: 11 of 11

TIME: 120 minutes

This page is intentionally left blank. Use it for rough work.


