UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS
 MATH 1210 Techniques of Classical and Linear Algebra
 FINAL EXAMINATION

December 16, 2017, 1:30-3:30 PM

LAST NAME: \qquad

FIRST NAME: \qquad

STUDENT NUMBER: \qquad

SIGNATURE:
(I understand that cheating is a serious offense and I have read and understand the above)

Please indicate your instructor and section by checking the appropriate box below:

A01 MWF (9:30-10:20 AM) M. Szestopalow

A02 MWF (1:30-2:20 PM) G.I. Moghaddam

A03 MWF (1:30-2:20 PM)
C. Ramsey

INSTRUCTIONS TO STUDENTS:

Fill in clearly all the information above.
This is a 120 minute exam.
No calculators, texts, notes, cellphones or other aids are permitted.
Show your work clearly for full marks.

This exam has a title page, 10 pages of questions and 1 blank page at the end for rough work. Please check that you have all pages.

The value of each question is indicated in the left-hand margin beside the statement of the question. The total value of all questions is 100.

Answer all questions on the exam paper in the space provided. If you need more room, you may continue your work on the reverse side of the page, but clearly indicate that your work is continued there.

DO NOT WRITE IN THIS TABLE

Question:	1	2	3	4	5	6	7	8	9	10	Total
Points:	9	8	12	10	10	6	17	7	10	11	100
Score:											

UNIVERSITY OF MANITOBA

DATE: December 16, 2017,
DEPARTMENT \& COURSE NO: MATH 1210
FINAL EXAMINATION
PAGE: 1 of 11 TIME: 120 minutes
[3] 1. (a) Write $\left(1+6\left(1^{2}\right)\right)+\left(1+6\left(2^{2}\right)\right)+\left(1+6\left(3^{2}\right)\right)+\ldots+\left(1+\left(6 n^{2}-12 n+6\right)\right)$ in sigma notation.
[6] (b) Evaluate the sum $\sum_{j=10}^{18}\left[4(j-6)^{3}+10\right]$ using any of the following identities that you may find relevant.
$\sum_{k=1}^{m} k=\frac{1}{2}[m(m+1)] \quad, \sum_{k=1}^{m} k^{2}=\frac{1}{6}[m(m+1)(2 m+1)] \quad, \quad \sum_{k=1}^{m} k^{3}=\frac{1}{4}\left[m^{2}(m+1)^{2}\right]$

UNIVERSITY OF MANITOBA

DATE: December 16, 2017,
DEPARTMENT \& COURSE NO: MATH 1210
FINAL EXAMINATION
PAGE: 2 of 11
TIME: 120 minutes
[8] 2. Find all of the third roots of -125 in Cartesian form and simplify as much as possible.

DATE: December 16, 2017,
DEPARTMENT \& COURSE NO: MATH 1210
FINAL EXAMINATION
PAGE: 3 of 11
EXAMINATION: Techniques of Classical and Linear Algebra
EXAMINERS: Moghaddam, Ramsey, Szestopalow
3. Let $P(x)=x^{4}-x^{3}+x^{2}+6 x-4$.
[6] (a) Prove that $P(1+\sqrt{3} i)=0$. Show your work.
[6] (b) Use part (a) to find all zeros of $P(x)$.

UNIVERSITY OF MANITOBA

DATE: December 16, 2017,
DEPARTMENT \& COURSE NO: MATH 1210
EXAMINATION: Techniques of Classical and Linear Algebra
EXAMINERS: Moghaddam, Ramsey, Szestopalow

FINAL EXAMINATION
PAGE: 4 of 11
TIME: 120 minutes
[10] 4. Use Cramer's rule to find the solution of the system

$$
\begin{aligned}
5 x-2 y+z & =0 \\
-x+2 y-z & =-1 \\
y+2 z & =0
\end{aligned}
$$

UNIVERSITY OF MANITOBA

DATE: December 16, 2017,
DEPARTMENT \& COURSE NO: MATH 1210
EXAMINATION: Techniques of Classical and Linear Algebra
EXAMINERS: Moghaddam, Ramsey, Szestopalow

FINAL EXAMINATION
PAGE: 5 of 11
TIME: 120 minutes
[10] 5. Find all basic solutions of the homogeneous system

$$
\begin{array}{rrrr}
6 x_{1}+3 x_{2}+12 x_{3} & -3 x_{4} & =0 \\
5 x_{1}+3 x_{2}+11 x_{3} & -3 x_{4} & +2 x_{5} & =0 \\
2 x_{1} & +2 x_{3} & +x_{4} & -7 x_{5}
\end{array}=0
$$

UNIVERSITY OF MANITOBA

DATE: December 16, 2017,
DEPARTMENT \& COURSE NO: MATH 1210
EXAMINATION: Techniques of Classical and Linear Algebra
EXAMINERS: Moghaddam, Ramsey, Szestopalow

FINAL EXAMINATION
PAGE: 6 of 11 TIME: 120 minutes
[6] 6. Let $A=\left[\begin{array}{ccc}2 & 0 & 4 \\ 0 & -2 & 4 \\ -1 & 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ccc}3 & -2 & 2 \\ 1 & 1 & 4 \\ 0 & -2 & -4\end{array}\right]$. Determine whether the columns of the matrix $A B$ are linearly independent or linearly dependent. Show your work.

DATE: December 16, 2017,
DEPARTMENT \& COURSE NO: MATH 1210
EXAMINATION: Techniques of Classical and Linear Algebra
EXAMINERS: Moghaddam, Ramsey, Szestopalow
FINAL EXAMINATION
PAGE: 7 of 11
7. Let $A=\left(\begin{array}{ccc}5 & -1 & 3 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right), B=\left(\begin{array}{ccc}2 & 5 & -3 \\ 0 & 0 & 1 \\ 0 & 2 & 0\end{array}\right)$, and $\mathbf{b}=\left(\begin{array}{l}2 \\ 2 \\ 0\end{array}\right)$.
[7] (a) Compute A^{-1}, if possible.
[7] (b) Compute B^{-1} using the Adjoint method.
[3] (c) Solve either $A \mathbf{x}=\mathbf{b}$ or $B \mathbf{x}=\mathbf{b}$. Do NOT solve both.

DATE: December 16, 2017,
DEPARTMENT \& COURSE NO: MATH 1210
EXAMINATION: Techniques of Classical and Linear Algebra
EXAMINERS: Moghaddam, Ramsey, Szestopalow

FINAL EXAMINATION
PAGE: 8 of 11 TIME: 120 minutes
[7] 8. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the function defined by

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x y+z \\
x \\
y
\end{array}\right)
$$

Prove that T is not a linear transformation. Show your work.

UNIVERSITY OF MANITOBA

DATE: December 16, 2017,
DEPARTMENT \& COURSE NO: MATH 1210
EXAMINATION: Techniques of Classical and Linear Algebra
EXAMINERS: Moghaddam, Ramsey, Szestopalow
FINAL EXAMINATION
PAGE: 9 of 11
9. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that first rotates vectors $\frac{3 \pi}{4}$ radians counter clockwise about the origin and then reflects the resulting vector across the x-axis.
[8] (a) Find the matrix associated with T.
[2] (b) What is the result of applying the linear transformation T^{-1} to the vector $\binom{2}{1}$?

UNIVERSITY OF MANITOBA

DATE: December 16, 2017,
DEPARTMENT \& COURSE NO: MATH 1210
EXAMINATION: Techniques of Classical and Linear Algebra
EXAMINERS: Moghaddam, Ramsey, Szestopalow
FINAL EXAMINATION
PAGE: 10 of 11 TIME: 120 minutes
10. Let $A=\left(\begin{array}{ccc}2 & 0 & 0 \\ -2 & -2 & 2 \\ -5 & -10 & 7\end{array}\right)$.
[8] (a) Find the eigenvalues of A. For each eigenvalue λ, find an eigenvector that corresponds to λ.
[3] (b) Let \mathbf{v} be one of the eigenvectors from part (a). Compute $A^{5} \mathbf{v}$.

DATE: December 16, 2017,
DEPARTMENT \& COURSE NO: MATH 1210
EXAMINATION: Techniques of Classical and Linear Algebra EXAMINERS: Moghaddam, Ramsey, Szestopalow

FINAL EXAMINATION
PAGE: 11 of 11 TIME: 120 minutes

This page is intentionally left blank. Use it for rough work.

