Attempt all questions and show all your work. Attach to Honesty Declaration Form.

1. Use mathematical induction on integer n to prove each of the following:
(a) $1(2)+2\left(2^{2}\right)+3\left(2^{3}\right)+\cdots+(n-3)\left(2^{n-3}\right)=2\left[1+(n-4) 2^{n-3}\right]$ for $n \geq 4$;
(b) $\quad 9^{n}+(49)^{n}-2$ is divisible by 8 for $n \geq 1$;
(c) $n^{3}>(n+1)^{2}$, for $n \geq 3$;
(d) n ! $>n^{3}$, for $n \geq 6$.
2. Identities $\sum_{k=1}^{m} k=\frac{1}{2}[m(m+1)]$ and $\sum_{k=1}^{m} k^{2}=\frac{1}{6}[m(m+1)(2 m+1)]$ are given.
(a) First write the sum $1^{2}+3^{2}+5^{2}+\cdots+(4 n+1)^{2}$ in sigma notation and then use the identities to prove that

$$
1^{2}+3^{2}+5^{2}+\cdots+(4 n+1)^{2}=\frac{1}{3}(2 n+1)\left(16 n^{2}+16 n+3\right)
$$

(b) Use the identities to evaluate the sum $\sum_{\ell=19}^{29}\left[\frac{1}{20}(\ell-18)^{2}-\frac{1}{5}\right]$.
3. Express each of the following in simplified Cartesian form.
(a) $6\left(\frac{1}{\sqrt{6}}+\frac{\sqrt{5} i}{\sqrt{6}}\right)^{10}\left(\frac{1}{\sqrt{6}}-\frac{\sqrt{5} i}{\sqrt{6}}\right)^{8}$;
(b) $\frac{i^{82}(\sqrt{2}+i)^{8}}{6+3 \sqrt{5} i}$;
(c) $\left(\frac{-\sqrt{3}+3 i}{\overline{3 i-\sqrt{3}}}\right)^{20}$.
4. Find a formula for the sigma $\sum_{k=1}^{3 n} \frac{2}{(2 k+1)(2 k+3)}$.

Hint: First write the general term as a subtraction of two terms.
5. Find all solutions of each of the following equations. Express your answers in polar form.
(a) $x^{6}+6 x^{4}+5 x^{2}=0$;
(b) $x^{5}+4 x^{3}-x^{2}-4=0$.

