Math 1210 Assignment 2

Due: Friday, October 20, 2017

Problem 1. Find all $6^{\text {th }}$ roots of -64 in Cartesian form. Simplify your answer as much as possible.

Problem 2. Find the remainder when $f(x)$ is divided by $g(x)$.
(a) $f(x)=i x^{6}+(1-2 i) x^{5}+5 i x^{4}-x+4$ and $g(x)=x-i$
(b) $f(x)=x^{72}+2 x^{31}-1$ and $g(x)=x+\frac{1}{2}+\frac{\sqrt{3}}{2} i$
(c) $f(x)=2 x^{4}+5 x^{3}+5 x^{2}+3 x+1$ and $g(x)=x^{2}+2 x+1$

Problem 3. For each of the following polynomial equations either use the Rational Root Theorem to make a list of possible rational solutions or explain why the Rational Root Theorem cannot be used.
(a) $f(x)=27 x^{3}-54 x^{2}+36 x-8$
(b) $g(x)=\frac{1}{6} x^{4}-\frac{2}{3} x^{3}+\frac{1}{3} x^{2}+\frac{2}{3} x+\frac{1}{6}$
(c) $h(x)=\sqrt{3} x^{4}-8 x^{3}+6 \sqrt{3} x^{2}-3 \sqrt{3}$

Problem 4. For the following polynomials use the Bounds Theorem to determine an upper bound for the modulus of their roots.
(a) $f(x)=27 x^{3}-54 x^{2}+36 x-8$
(b) $g(x)=\frac{1}{6} x^{4}-\frac{2}{3} x^{3}+\frac{1}{3} x^{2}+\frac{2}{3} x+\frac{1}{6}$
(c) $h(x)=i x^{6}+(1-2 i) x^{5}+5 i x^{4}-x+4$

Problem 5. Let $P(x)=x^{5}+7 x^{4}+9 x^{3}-21 x^{2}-52 x-28$.
(i) Using Descartes' Rules of Signs determine the number of real positive roots of $P(x)$ and the number of real negative roots of $P(x)$.
(ii) Use the Rational Root Theorem to determine all possible rational roots of $P(x)$.
(iii) Evaluate $P(x)$ at possible rational roots and use the Factor Theorem to find one or more linear factor(s) which divide $P(x)$.
(iv) Explain why $P(x)$ has no roots in the interval $[3, \infty)$.
(v) Find all roots of $P(x)$.

Problem 6. Let $P(x)=4 x^{6}-8 x^{5}+8 x^{4}-4 x^{3}+8 x^{2}-8 x$.
(i) Using Descartes' Rules of Signs determine the number of real positive roots of $P(x)$ and the number of real negative roots of $P(x)$. What is the minimum number of real roots? What is the maximum?
(ii) Use the Rational Root Theorem to determine all possible rational roots of $P(x)$ (Hint: If $P(x)=Q(x) \cdot R(x)$ where $Q(x)$ and $R(x)$ are polynomials, then the rational roots of $Q(x)$ and $R(x)$ are also rational roots of $P(x))$.
(iii) Use the Bounds Theorem to determine an upper bound for the modulus of roots of $P(x)$. Does this eliminate any possible rational roots? Which ones?
(iv) Evaluate $P(x)$ at possible rational roots and use the Factor Theorem to find one or more linear factor(s) which divide $P(x)$.
(v) Given that $\frac{-1}{2}-\frac{\sqrt{3}}{2} i$ is a root of $P(x)$, find all roots of $P(x)$.

Problem 7. Consider the following matrices:

$$
A=\left(\begin{array}{ccc}
4 & 0 & 5 \\
-1 & 3 & 2
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 3 \\
1 & 5 \\
1 & 7
\end{array}\right), \quad \text { and } \quad C=\left(\begin{array}{cc}
9 & k \\
4 & 26
\end{array}\right)
$$

(a) Find the value(s) of k such that $A B=C$.
(b) Compute each of the following, or explain why it is undefined.
(i) $\left(A-B^{T}\right) C^{T}$
(ii) $2 A^{T}+3 B$
(iii) $A^{T} B^{T}$
(iv) $B^{T} A$

