Math 1210 Assignment 3 - Due: Friday, November 24, 2017
Attempt all questions and show your work. Attach to Honesty Declaration Form.

1. Find the symmetric equations for the line $2 x-3 y+z=2, x+2 y-2 z=4$.
2.

(a) Find the equation of the plane through the points $(2,-1,5)$ and $(1,1,-1)$ and parallel to the line $x=3-t, y=2+2 t, z=3 t$.
(b) Find the equation of the plane containing the intersecting lines $x-2=\frac{y-1}{2}=\frac{z-1}{3}$ and $\frac{x+1}{3}=y=-z+2$.
3. Find all solutions of the systems of linear equations.

$$
\text { (a) } \begin{array}{lll}
2 x_{1}+3 x_{2}=2 \\
3 x_{1}-2 x_{2}=1 \\
4 x_{1}+3 x_{2}=2
\end{array} \quad \text { (b) } \quad \begin{aligned}
& 3 x_{1}+2 x_{2}+4 x_{3}=4 \\
& 2 x_{1}-5 x_{2}+x_{3}=3 \\
& 2 x_{1}-2 x_{2}+4 x_{3}=-6 \tag{b}
\end{aligned}
$$

4. Find all basic solutions of the homogeneous system:

$$
\begin{array}{r}
4 x_{1}-4 x_{2}+2 x_{3}+4 x_{4}-12 x_{5}=0 \\
3 x_{1}-3 x_{2}+2 x_{3}-2 x_{4}-9 x_{5}=0
\end{array}
$$

5. Let $A=\left[\begin{array}{ccc}2 & 3 & -1 \\ 1 & -1 & -2\end{array}\right]$ and calculate $\operatorname{det}\left(\left(A^{T} A\right)^{10}\right)$.
6. Use Cramer's rule to find the solution of the system

$$
\begin{aligned}
3 x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{1}+4 x_{2}-x_{3} & =1 \\
5 x_{1}-3 x_{2}+2 x_{3} & =-1
\end{aligned}
$$

7. Determine whether the following sets of vectors are linearly dependent or linearly independent. If they are linearly dependent then express one of the vectors as a linear combination of the others.
(a) $\langle 2,3,-1,-2\rangle,\langle 7,2,-3,10\rangle,\langle-1,0,3,4\rangle$
(b) $\langle 2,2,-1\rangle,\langle 2,1,-2\rangle,\langle 5,-3,0\rangle,\langle 3,1,1\rangle$
