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1. (a)[8] Use mathematical induction on integer n ≥ 1 to prove that

2! (2) + 3! (3) + 4! (4) + . . . + (n + 1)! (n + 1) = (n + 2)! − 2 .

(b)[3] Write 2! (2) + 3! (3) + 4! (4) + . . . + (n + 1)! (n + 1) in sigma notation such
that the index starts from 0.
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2.[10] Find the Cartesian form of
i62 (
√

2 +
√

6 i)8

28(−
√

6−
√

2 i)
. Simplify as much as possible.
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3.[6] Find all of the fourth roots of 16i . Leave your answers in exponential form, but
simplify it.
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4. Consider the polynomial equation P (x) = 0 where P (x) = 2x4+2x3+x2+5x−10.

(a)[3] Use Rational Root Theorem to determine all possible rational roots of P (x).

(b)[3] Let Q(x) = (x − 5)P (x). How many positive real roots and negative real
roots does Q(x) have? Explain.

(c)[3] Use Bounds Theorem to determine an upper bound for the modulus of roots
of P (x). Does this eliminate any possible rational roots? Which ones?

(d)[6] Find all of the solutions to P (x) = 0.
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5.[8] Let

A =

 2 k
1 2
1 1

 , B =

 4 1
1 2
−1 0

 , C =

[
1 2
2 1

]
and D =

[
−1 1
−4 −3

]
.

Find value(s) of k for which BTA − 2C 2 + I = D .
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6. Let u = 〈1, 2, 4〉,v = 〈−1, 0, 1〉 and w = 〈2, 1,−1〉.
(a)[3] Find the angle between the vectors u and w .

(b)[7] Find a unit vector in the direction of the vector r =
(
(u+ v) ·w

)
(v− 2u).
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