\qquad
SIGNATURE: (in ink) \qquad STUDENT NUMBER: \qquad

\square	A01	9:30-10:20 AM	MWF (207 Buller)	M. Szestopalow
\square	A02	1:30-2:20 PM	MWF (100 St. Paul)	G. I. Moghaddam
\square	A03	$1: 30-2: 20$ PM	MWF (221 Wallace)	C. Ramsey

INSTRUCTIONS TO STUDENTS:

This is a 75 minutes exam. Please show your work clearly.

No texts, notes, or other aids are permitted. There are no calculators, cellphones or electronic translators permitted.

This exam has a title page, 6 pages of questions and also 1 blank page for rough work. Please check that you have all the pages. You may remove the blank page if you want, but be careful not to loosen the staple.

The value of each question is indicated in the left hand margin beside the statement of the question. The total value of all questions is 60 points.

Question	Points	Score
1	11	
2	10	
3	6	
4	15	
5	8	
6	10	
Total:	60	

Answer all questions on the exam

 paper in the space provided beneath the question. If you need more room, you may continue your work on the reverse side of the page, but CLEARLYINDICATE that your work is continued.

UNIVERSITY OF MANITOBA

DATE: October 26, 2017
EXAMINATION: Techniques of Classical and Linear Algebra TIME: 75 minutes COURSE: MATH $\overline{1210}$ EXAMINER: Moghaddam, Ramsey, Szestopalow
[8] 1. (a) Use mathematical induction on integer $n \geq 1$ to prove that

$$
2!(2)+3!(3)+4!(4)+\ldots+(n+1)!(n+1)=(n+2)!-2 .
$$

[3] (b) Write 2! (2) $+3!(3)+4!(4)+\ldots+(n+1)!(n+1)$ in sigma notation such that the index starts from 0 .

UNIVERSITY OF MANITOBA

DATE: October 26, 2017 MIDTERM
PAGE: 2 of 7 EXAMINATION: Techniques of Classical and Linear Algebra TIME: 75 minutes COURSE: MATH 1210 EXAMINER: Moghaddam, Ramsey, Szestopalow
[10] 2. Find the Cartesian form of $\frac{i^{62}(\sqrt{2}+\sqrt{6} i)^{8}}{2^{8}(-\sqrt{6}-\sqrt{2} i)}$. Simplify as much as possible.

UNIVERSITY OF MANITOBA

DATE: October 26, 2017
MIDTERM
PAGE: 3 of 7
EXAMINATION: Techniques of Classical and Linear Algebra TIME: 75 minutes COURSE: MATH $\overline{1210}$ EXAMINER: Moghaddam, Ramsey, Szestopalow
[6] 3. Find all of the fourth roots of $16 i$. Leave your answers in exponential form, but simplify it.

UNIVERSITY OF MANITOBA

DATE: October 26, 2017
EXAMINATION: Techniques of Classical and Linear Algebra TIME: 75 minutes COURSE: MATH 1210 EXAMINER: Moghaddam, Ramsey, Szestopalow
4. Consider the polynomial equation $P(x)=0$ where $P(x)=2 x^{4}+2 x^{3}+x^{2}+5 x-10$.
[3] (a) Use Rational Root Theorem to determine all possible rational roots of $P(x)$.
[3] (b) Let $Q(x)=(x-5) P(x)$. How many positive real roots and negative real roots does $Q(x)$ have? Explain.
[3] (c) Use Bounds Theorem to determine an upper bound for the modulus of roots of $P(x)$. Does this eliminate any possible rational roots? Which ones?
[6] (d) Find all of the solutions to $P(x)=0$.

UNIVERSITY OF MANITOBA

DATE: October 26, 2017
PAGE: 5 of 7 EXAMINATION: Techniques of Classical and Linear Algebra TIME: 75 minutes COURSE: MATH $\overline{1210}$ EXAMINER: Moghaddam, Ramsey, Szestopalow
[8] 5. Let

$$
A=\left[\begin{array}{ll}
2 & k \\
1 & 2 \\
1 & 1
\end{array}\right], B=\left[\begin{array}{cc}
4 & 1 \\
1 & 2 \\
-1 & 0
\end{array}\right], C=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \text { and } D=\left[\begin{array}{cc}
-1 & 1 \\
-4 & -3
\end{array}\right]
$$

Find value(s) of k for which $B^{T} A-2 C^{2}+I=D$.

UNIVERSITY OF MANITOBA

DATE: October 26, 2017
PAGE: 6 of 7
EXAMINATION: Techniques of Classical and Linear Algebra TIME: 75 minutes COURSE: MATH $\overline{1210}$ EXAMINER: Moghaddam, Ramsey, Szestopalow
6. Let $\mathbf{u}=\langle 1,2,4\rangle, \mathbf{v}=\langle-1,0,1\rangle$ and $\mathbf{w}=\langle 2,1,-1\rangle$.
[3] (a) Find the angle between the vectors \mathbf{u} and \mathbf{w}.
[7] (b) Find a unit vector in the direction of the vector $\mathbf{r}=((\mathbf{u}+\mathbf{v}) \cdot \mathbf{w})(\mathbf{v}-2 \mathbf{u})$.

UNIVERSITY OF MANITOBA
DATE: October 26, 2017 MIDTERM
PAGE: 7 of 7 EXAMINATION: Techniques of Classical and Linear Algebra TIME: 75 minutes COURSE: MATH $\overline{1210}$ EXAMINER: Moghaddam, Ramsey, Szestopalow

BLANK PAGE FOR ROUGH WORK

