1210 Assignment 2 due Monday October 28

1. Consider the polynomial equation

$$
P(x)=2 x^{5}+x^{4}-22 x^{3}+13 x^{2}+20 x+4=0 .
$$

(a) Use Descartes' rules of sign to state the number of possible positive and negative roots of the equation.
(b) Find an upper bound for $|x|$ when x is a root of the equation.
(c) Use the rational root theorem to list possible rational roots of the equation.
(d) Find all roots of the equation.
2. You are given that $x=2-3 i$ is a zero of the polynomial

$$
P(x)=2 x^{4}-5 x^{3}+21 x^{2}+11 x+91
$$

Find all other zeros.
3. Prove or disprove that for any two $n \times n$ matrices A and B ,

$$
(A-B)(A+B)=A^{2}-B^{2} .
$$

4. If $\mathbf{u}=\langle 2,-4,1\rangle, \mathbf{v}=\langle 4,-3,-2\rangle$, and $\mathbf{w}=\langle 4,1,-5\rangle$, calculate (a) $\mathbf{u} \cdot \mathbf{v} \times \mathbf{w}$, called the scalar triple product, and (b) $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})$, called a vector triple product.
5. Find all vectors that are perpendicular to $\langle 1,-2,5\rangle$, have y-components equal to 3 times their x-components, and have length 5 .
6. Find parametric and symmetric equations for the line

$$
x-y+2 z=4, \quad 3 x+y-z=7 .
$$

In problems $7-8$, find out whether there exists a plane containing the two given lines. If there is such a plane, find its equation.
7.

$$
L_{1}: \begin{aligned}
& x=2-t, \\
& y=3+2 t, \\
& z=4+t
\end{aligned} \quad L_{2}: \quad \begin{aligned}
& x=1+s, \\
& y=5-2 s, \\
& z=5+s
\end{aligned}
$$

8.

$$
\begin{aligned}
x & =1+t, \\
L_{1}: \quad y & =2-t, \\
z & =-3+2 t
\end{aligned}
$$

$$
\begin{array}{ll}
L_{2}: & x+2 y+z=4, \\
& x-y+2 z=-3
\end{array}
$$

