1210 Assignment 3 Solutions

1. Consider the matrix

$$
A=\left(\begin{array}{cccc}
3 & -1 & 4 & 7 \\
1 & 2 & -5 & 8
\end{array}\right)
$$

(a) Find the reduced row-echelon form of A by first dividing the first row by 3 . Now use the 1 in the $(1,1)$ position to make the $(2,1)$ entry zero and so on. Show all of your row operations carefully.
(b) Now, starting from A again, find the reduced row-echelon form of A as follows: Switch the two rows, and then use the 1 in the $(1,1)$ position to make the $(2,1)$ entry zero and so on.
(a)

$$
\begin{aligned}
& \left(\begin{array}{cccc}
3 & -1 & 4 & 7 \\
1 & 2 & -5 & 8
\end{array}\right) R_{1} \rightarrow R_{1} / 3 \\
\longrightarrow & \left(\begin{array}{cccc}
1 & -1 / 3 & 4 / 3 & 7 / 3 \\
1 & 2 & -5 & 8
\end{array}\right) R_{2} \rightarrow-R_{1}+R_{2} \\
\longrightarrow & \left(\begin{array}{cccc}
1 & -1 / 3 & 4 / 3 & 7 / 3 \\
0 & 7 / 3 & -19 / 3 & 17 / 3
\end{array}\right) R_{2} \rightarrow 3 R_{2} / 7 \\
\longrightarrow & \left(\begin{array}{cccc}
1 & -1 / 3 & 4 / 3 & 7 / 3 \\
0 & 1 & -19 / 7 & 17 / 7
\end{array}\right) R_{1} \rightarrow R_{2} / 3+R_{1} \\
\longrightarrow & \left(\begin{array}{llll}
1 & 0 & 3 / 7 & 22 / 7 \\
0 & 1 & -19 / 7 & 17 / 7
\end{array}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \left(\begin{array}{cccc}
3 & -1 & 4 & 7 \\
1 & 2 & -5 & 8
\end{array}\right) \begin{array}{l}
R_{1} \rightarrow R_{2} \\
R_{2} \rightarrow R_{1}
\end{array} \\
& \longrightarrow\left(\begin{array}{cccc}
1 & 2 & -5 & 8 \\
3 & -1 & 4 & 7
\end{array}\right) R_{2} \rightarrow-3 R_{1}+R_{2} \\
& \longrightarrow\left(\begin{array}{cccc}
1 & 2 & -5 & 8 \\
0 & -7 & 19 & -17
\end{array}\right) \quad R_{2} \rightarrow-R_{2} / 7 \\
& \longrightarrow\left(\begin{array}{cccc}
1 & 2 & -5 & 8 \\
0 & 1 & -19 / 7 & 17 / 7
\end{array}\right) R_{1} \rightarrow-2 R_{2}+R_{1} \\
& \longrightarrow\left(\begin{array}{cccc}
1 & 0 & 3 / 7 & 22 / 7 \\
0 & 1 & -19 / 7 & 17 / 7
\end{array}\right)
\end{aligned}
$$

2. Consider the three vectors

$$
\mathbf{u}=\langle a+3,1,1\rangle, \quad \mathbf{v}=\langle 1, a+2,2\rangle, \quad \mathbf{w}=\langle 1,2, a+2\rangle
$$

where a is a real number.
(a) Find all values of a such that the vectors are linearly dependent.
(b) For each of the values of a found in part (a), express \mathbf{v} as a linear combination of the vectors \mathbf{u} and \mathbf{w}.
(a) The vectors are linearly dependent if

$$
\begin{aligned}
0 & =\left|\begin{array}{ccc}
a+3 & 1 & 1 \\
1 & a+2 & 2 \\
1 & 2 & a+2
\end{array}\right|=(a+3)\left[(a+2)^{2}-4\right]-(a+2-2)+(2-a-2) \\
& =(a+3)\left(a^{2}+4 a\right)-2 a=a^{3}+7 a^{2}+10 a=a(a+2)(a+5) .
\end{aligned}
$$

Thus, $a=0,-2,-5$.
(b) When $a=0$, the vectors are

$$
\mathbf{u}=\langle 3,1,1\rangle, \quad \mathbf{v}=\langle 1,2,2\rangle, \quad \mathbf{w}=\langle 1,2,2\rangle .
$$

Clearly, $\mathbf{v}=\mathbf{w}$.
When $a=-2$, the vectors are

$$
\mathbf{u}=\langle 1,1,1\rangle, \quad \mathbf{v}=\langle 1,0,2\rangle, \quad \mathbf{w}=\langle 1,2,0\rangle .
$$

We see that $\mathbf{v}=2 \mathbf{u}-\mathbf{w}$. If this is not evident, we consider finding constants C_{1} and C_{2} such that

$$
\mathbf{v}=C_{1} \mathbf{u}+C_{2} \mathbf{w} \quad \Longrightarrow \quad\langle 1,0,2\rangle=C_{1}\langle 1,1,1\rangle+C_{2}\langle 1,2,0\rangle
$$

When we equate components,

$$
1=C_{1}+C_{2}, \quad 0=C_{1}+2 C_{2}, \quad 2=C_{1}
$$

The solution is $C_{1}=2, C_{2}=-1$ and therefore $\mathbf{v}=2 \mathbf{u}-\mathbf{w}$.
When $a=-5$, the vectors are

$$
\mathbf{u}=\langle-2,1,1\rangle, \quad \mathbf{v}=\langle 1,-3,2\rangle, \quad \mathbf{w}=\langle 1,2,-3\rangle .
$$

We can see that $\mathbf{v}=-\mathbf{u}-\mathbf{w}$. If this is not evident, we can apply the same procedure as we did for $a=-2$.
3. It is given to you that the matrix

$$
A=\left[\begin{array}{cccc}
a+b-3 & b+3 a & 0 & 1 \\
0 & 0 & 1 & 4 a-7 b \\
0 & 0 & 3 a+2 b-5 & 0
\end{array}\right]
$$

is in reduced row-echelon form. Find the values of a and b.

One possibility for RREF is to have the $(1,1)$ entry equal to 1 and the $(3,3)$ entry equal to 0 , in which case

$$
a+b-3=1, \quad 3 a+2 b-5=0, \quad \text { or } \quad a+b=4, \quad 3 a+2 b=5 .
$$

By Cramer's rule,

$$
a=\frac{\left|\begin{array}{ll}
4 & 1 \\
5 & 2
\end{array}\right|}{\left|\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right|}=\frac{3}{-1}=-3, \quad b=\frac{\left|\begin{array}{ll}
1 & 4 \\
3 & 5
\end{array}\right|}{-1}=\frac{-7}{-1}=7 .
$$

A second possibility is to have the $(1,1)$ entry equal to 0 , the $(1,2)$ entry equal to 1 , and the $(3,3)$ entry equal to 0 , in which case

$$
a+b-3=0, \quad b+3 a=1, \quad 3 a+2 b-5=0
$$

or,

$$
a+b=3, \quad 3 a+b=1, \quad 3 a+2 b=5 .
$$

We use augmented matrices to see if this system of three equations in two unknowns has a solution,

$$
\begin{gathered}
\left(\begin{array}{ll|l}
1 & 1 & 3 \\
3 & 1 & 1 \\
3 & 2 & 5
\end{array}\right) \begin{array}{l}
R_{2} \rightarrow-3 R_{1}+R_{2} \\
R_{3} \rightarrow-3 R_{1}+R_{3}
\end{array} \longrightarrow\left(\begin{array}{cc|c}
1 & 1 & 3 \\
0 & -2 & -8 \\
0 & -1 & -4
\end{array}\right) R_{2} \rightarrow-R_{2} / 2 \\
\\
\longrightarrow\left(\begin{array}{cc|c}
1 & 1 & 3 \\
0 & 1 & 4 \\
0 & -1 & -4
\end{array}\right) \begin{array}{c}
R_{1} \rightarrow-R_{2}+R_{1} \\
R_{3} \rightarrow R_{2}+R_{3}
\end{array} \longrightarrow\left(\begin{array}{cc|c}
1 & 0 & -1 \\
0 & 1 & 4 \\
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Thus, $a=-1$ and $b=4$.
4. Consider the following system of equations:

$$
x+y+z=1, \quad-2 x+y-3 z=0, \quad 5 x-8 y+11 z=3 .
$$

(a) Solve the system using Gauss-Jordan elimination.
(b) Now solve the same system using Cramer's rule.
(a)

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
-2 & 1 & -3 & 0 \\
5 & -8 & 11 & 3
\end{array}\right) \begin{array}{c}
\\
R_{2} \rightarrow 2 R_{1}+R_{2} \\
R_{3} \rightarrow-5 R_{1}+R_{3}
\end{array} \\
& \longrightarrow\left(\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
0 & 3 & -1 & 2 \\
0 & -13 & 6 & -2
\end{array}\right) \quad R_{3} \rightarrow 4 R_{2}+R_{3} \\
& \longrightarrow\left(\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
0 & 3 & -1 & 2 \\
0 & -1 & 2 & 6
\end{array}\right) \begin{array}{c}
\\
R_{2} \rightarrow-R_{3} \\
R_{3} \rightarrow R_{2}
\end{array} \\
& \longrightarrow\left(\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
0 & 1 & -2 & -6 \\
0 & 3 & -1 & 2
\end{array}\right) \quad \begin{array}{l}
R_{1} \rightarrow-R_{2}+R_{1} \\
R_{3} \rightarrow-3 R_{2}+R_{3}
\end{array} \\
& \longrightarrow\left(\begin{array}{ccc|c}
1 & 0 & 3 & 7 \\
0 & 1 & -2 & -6 \\
0 & 0 & 5 & 20
\end{array}\right) \quad R_{3} \rightarrow R_{3} / 5 \\
& \longrightarrow\left(\begin{array}{ccc|c}
1 & 0 & 3 & 7 \\
0 & 1 & -2 & -6 \\
0 & 0 & 1 & 4
\end{array}\right) \begin{array}{l}
R_{1} \rightarrow-3 R_{3}+R_{1} \\
R_{2} \rightarrow 2 R_{3}+R_{2}
\end{array} \\
& \longrightarrow\left(\begin{array}{ccc|c}
1 & 0 & 0 & -5 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 4
\end{array}\right)
\end{aligned}
$$

Hence, the solution is $x=-5, y=2$, and $z=4$.
(b) By Cramer's rule,

$$
\begin{aligned}
& x=\frac{\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -3 \\
3 & -8 & 11
\end{array}\right|}{\left|\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 1 & -3 \\
5 & -8 & 11
\end{array}\right|}=\frac{1(-13)+3(-4)}{1(-13)+2(19)+5(-4)}=-5, \\
& y=\frac{\left|\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 0 & -3 \\
5 & 3 & 11
\end{array}\right|}{5}=\frac{-1(-7)-3(-1)}{5}=2,
\end{aligned}
$$

$$
z=\frac{\left|\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 1 & 0 \\
5 & -8 & 3
\end{array}\right|}{5}=\frac{1(11)+3(3)}{5}=4
$$

5. Consider the matrix

$$
M=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Find $\operatorname{det}(M)$. Hint: Use row operations to convert the determinant into a form which can be calculated more easily.

If we add -1 times the first row to rows $2,3,4$, and 5 , we get

$$
\operatorname{det}(M)=\operatorname{det}\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & -1 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

If we expand along the first column,

$$
\operatorname{det}(M)=\operatorname{det}\left[\begin{array}{ccccc}
0 & 0 & 0 & -1 & 1 \\
0 & 0 & -1 & 0 & 1 \\
0 & -1 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Now, add rows $1,2,3$, and 4 to row 5 ,

$$
\operatorname{det}(M)=\operatorname{det}\left[\begin{array}{ccccc}
0 & 0 & 0 & -1 & 1 \\
0 & 0 & -1 & 0 & 1 \\
0 & -1 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 5
\end{array}\right]
$$

Now expand along the last row,

$$
\operatorname{det}(M)=5 \operatorname{det}\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right]=5 .
$$

