DATE \& TIME: 31 October, 2019, 5:45 pm - 7 pm
DURATION: 75 minutes EXAMINER: Jaydeep Chipalkatti and Donald Trim

Solutions to the Midterm

[8] 1. Use the Principle of Mathematical Induction to prove the equality

$$
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

for all $n \geqslant 1$.

Solution: Let $P(n)$ denote the given statement.
Step A: We verify $P(1)$. The LHS (left-hand side) of $P(1)$ is equal to $\frac{1}{1.2}=\frac{1}{2}$. The RHS (right-hand side) is also $\frac{1}{1+1}=\frac{1}{2}$. Hence $P(1)$ is true.

Step B: Now assume the statement $P(k)$, which is:

$$
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\cdots+\frac{1}{k(k+1)}=\frac{k}{k+1} .
$$

The statement to be proved is $P(k+1)$, which is:

$$
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\cdots+\frac{1}{(k+1)(k+2)}=\frac{k+1}{k+2}
$$

Then we have

$$
\begin{aligned}
& \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\cdots+\frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)} \\
= & \frac{k}{k+1}+\frac{1}{(k+1)(k+2)}=\frac{k(k+2)+1}{(k+1)(k+2)}=\frac{k^{2}+2 k+1}{(k+1)(k+2)}=\frac{(k+1)^{2}}{(k+1)(k+2)}=\frac{k+1}{k+2} .
\end{aligned}
$$

We have proved that $P(k) \Longrightarrow P(k+1)$, which completes Step B. Hence $P(n)$ is proved for all $n \geqslant 1$, by the Principle of Mathematical Induction.
[4] 2. Write the sum

$$
\frac{3}{2^{7}}-\frac{4}{2^{8}}+\frac{5}{2^{9}}-\frac{6}{2^{10}}+\cdots+\frac{11}{2^{15}}
$$

in Σ-notation. Your index of summation should start from 1 .

Solution:

The sum can be written as

$$
\sum_{i=1}^{9}(-1)^{i+1} \frac{i+2}{2^{i+6}}
$$

Of course, you can use any letter in place of i.
[7] 3. Convert the complex number

$$
\frac{\overline{1+i}}{\left(\sqrt{2}+e^{\frac{3 \pi i}{4}}\right)^{6}}
$$

into Cartesian form.

Solution:

Let z denote this number. Such problems are often easier if you simplify the numerator and the denominator separately. The numerator is $1+i=1-i$.
As to the denominator, notice that

$$
e^{\frac{3 \pi i}{4}}=\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}=-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}} .
$$

Hence

$$
\sqrt{2}+e^{\frac{3 \pi i}{4}}=\sqrt{2}-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}=\frac{2-1}{\sqrt{2}}+\frac{i}{\sqrt{2}}=\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}=e^{\frac{\pi i}{4}},
$$

and then

$$
\text { denominator }=\left(\sqrt{2}+e^{\frac{3 \pi i}{4}}\right)^{6}=\left(e^{\frac{\pi i}{4}}\right)^{6}=e^{\frac{6 \pi i}{4}}=e^{\frac{3 \pi i}{2}}=\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}=0-i=-i \text {. }
$$

Hence

$$
z=\frac{1-i}{-i}=\frac{(1-i) i}{-i . i}=\frac{(1-i) i}{-i^{2}}=\frac{(1-i) i}{1}=1+i .
$$

DATE \& TIME: 31 October, 2019, 5:45 pm - 7 pm
DURATION: 75 minutes EXAMINER: Jaydeep Chipalkatti and Donald Trim
[7] 4. Consider the polynomial

$$
f(x)=x^{3}+a x^{2}+b x+c
$$

where a, b, c are real numbers. It is given to you that $3-i$ and 2 are roots ($=$ zeros) of $f(x)$. Find the values of a, b, c.

Solution:

Since a, b, c are real numbers, $f(x)$ is a polynomial with real coefficients. Since $3-i$ is a root, its conjugate $3+i$ is also a root. (This follows from Theorem 3.5 in Section 3.1 of our course notes.) Since $\operatorname{deg} f(x)=3$, we know that

$$
3-i, \quad 3+i, \quad 2
$$

are all the roots of $f(x)$, and hence

$$
f(x)=(x-(3-i))(x-(3+i))(x-2) .
$$

Now it is just a matter of multiplying this out carefully. We have

$$
(x-(3-i))(x-(3+i))=x^{2}-6 x+10,
$$

and then

$$
f(x)=\left(x^{2}-6 x+10\right)(x-2)=x^{3}-8 x^{2}+22 x-20 .
$$

Hence

$$
a=-8, \quad b=22, \quad \text { and } \quad c=-20 .
$$

[5] 5. Consider the matrix $A=\left[\begin{array}{cc}3 & -1 \\ 2 & -5\end{array}\right]$, and let I_{2} denote the 2×2 identity matrix. Now find the matrix

$$
A^{2}+2 A-13 I_{2}
$$

Solution: We have

$$
A^{2}=\left[\begin{array}{ll}
3 & -1 \\
2 & -5
\end{array}\right]\left[\begin{array}{ll}
3 & -1 \\
2 & -5
\end{array}\right]=\left[\begin{array}{rr}
7 & 2 \\
-4 & 23
\end{array}\right]
$$

and hence

$$
A^{2}+2 A-13 I_{2}=\left[\begin{array}{rr}
7 & 2 \\
-4 & 23
\end{array}\right]+2\left[\begin{array}{ll}
3 & -1 \\
2 & -5
\end{array}\right]-13\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

[4] 6. Let I_{n} denote the $n \times n$ identity matrix. Let A and B be matrices such that the expression

$$
B^{T} I_{3} A-5 I_{4}
$$

is defined. Find the sizes of A and B.

Solution:

Let us suppose that A is $a \times b$, and B is $c \times d$. Then B^{T} is $d \times c$. Since $B^{T} I_{3}$ is defined, we must have $c=3$. Since $I_{3} A$ is defined, $a=3$. Now $B^{T} I_{3} A$ is $d \times b$. But we know that it must be 4×4, since its addition with $-5 I_{4}$ is defined. Hence $d=4, b=4$.
In conclusion, A and B are both 3×4.
[6] 7. Consider the vectors

$$
\mathbf{u}=\langle 4, a, 7\rangle \quad \text { and } \quad \mathbf{v}=\langle a, a-1,-4\rangle
$$

in \mathbb{R}^{3}. It is given to you that \mathbf{u} and \mathbf{v} are perpendicular (i.e., orthogonal). Find all possible values of a.

Solution:

Since \mathbf{u}, \mathbf{v} are perpendicular, we have $\mathbf{u} . \mathbf{v}=0$. Thus

$$
0=4 a+a(a-1)-28=a^{2}+3 a-28=(a+7)(a-4) .
$$

Hence $a=-7$ or 4 .

DATE \& TIME: 31 October, 2019, 5:45 pm - 7 pm
DURATION: 75 minutes EXAMINER: Jaydeep Chipalkatti and Donald Trim
[9] 8. Consider the two lines

$$
L_{1}: \quad x=2-t, \quad y=3+t, \quad z=-4-6 t
$$

and

$$
L_{2}: \quad x=s, \quad y=2-s, \quad z=3+6 s
$$

in \mathbb{R}^{3}.
(a) Show that L_{1} and L_{2} are parallel. (That is to say, give a complete mathematical reasoning.)
(b) Now find the equation of the unique plane which contains both L_{1} and L_{2}.

Solution: Using the parametric equations above, we see that the direction vectors for L_{1} and L_{2} are respectively

$$
\langle-1,1,-6\rangle, \quad \text { and } \quad\langle 1,-1,6\rangle .
$$

Since they are negatives of each other, we know that either L_{1}, L_{2} are parallel or they are the same line. We need to show that they are distinct lines. Take the point $P=(2,3,-4)$ on L_{1}. If it were on L_{2}, then the equations

$$
2=s, \quad 3=2-s, \quad-4=3+6 s
$$

would have been consistent, but they are not. Hence $(2,3,-4)$ is not on L_{2} and the lines are distinct. It follows that they are parallel.
Let Π denote the plane containing L_{1} and L_{2}. In order to find the normal \mathbf{n} to Π, take any point Q on L_{2}. For instance, by letting $s=0$, we can take $Q=(0,2,3)$. Then the vector $P Q=\langle-2,-1,7\rangle$ is in Π. Now we can take

$$
\begin{aligned}
\mathbf{n} & =\text { direction vector of } L_{1} \times P Q=\langle-1,1,-6\rangle \times\langle-2,-1,7\rangle \\
& \left|\begin{array}{rrr}
i & j & k \\
-1 & 1 & -6 \\
-2 & -1 & 7
\end{array}\right|=\left|\begin{array}{rr}
1 & -6 \\
-1 & 7
\end{array}\right| i-\left|\begin{array}{rr}
-1 & -6 \\
-2 & 7
\end{array}\right| j+\left|\begin{array}{rr}
-1 & 1 \\
-2 & -1
\end{array}\right| k \\
& =i+19 j+3 k=\langle 1,19,3\rangle .
\end{aligned}
$$

Hence the equation of Π must be of the form $x+19 y+3 z=k$ for some constant k. Now substitute the coordinates of $P=(2,3,-4)$ to get $k=2+19.3+3 \cdot(-4)=47$. Hence the equation of Π is

$$
x+19 y+3 z=47
$$

