Attempt all questions and show all your work. Some or all questions will be marked.

1. Use mathematical induction on integer n to prove each of the following:
(a) $1(3)+2\left(3^{2}\right)+3\left(3^{3}\right)+\cdots+(n+1)\left(3^{n+1}\right)=\frac{1}{4}\left[(2 n+1)\left(3^{n+2}\right)+3\right]$ for $n \geq 1$;
(b) $\quad 1(4)+2(5)+3(6)+\cdots+2 n(2 n+3)=\frac{2}{3}(n)(2 n+1)(2 n+5)$ for $n \geq 1$;
(c) $\frac{(2 n)!}{(n!)^{2}}>2^{n}$ for $n \geq 2$;
(d) $\quad a^{3 n}-b^{3 n}$ is divisible by $a^{2}+a b+b^{2}$, where a and b are fixed integers and n is any positive integer.
2. Write the sum in sigma notation.

$$
3-\frac{4(5)}{\sqrt{3}}+\frac{9(7)}{\sqrt{5}}-\frac{16(9)}{\sqrt{7}}+\cdots+\frac{121(23)}{\sqrt{21}}
$$

3. Consider the sum $(3)^{2}+(8)^{2}+(13)^{2}+\cdots+(15 n-2)^{2}$:
(a) Write the sum in sigma notation.
(b) Use identities $\sum_{k=1}^{m} k=\frac{1}{2}[m(m+1)]$ and $\sum_{k=1}^{m} k^{2}=\frac{1}{6}[m(m+1)(2 m+1)]$ to prove that

$$
(3)^{2}+(8)^{2}+(13)^{2}+\cdots+(15 n-2)^{2}=\frac{1}{2}(n)\left(450 n^{2}+45 n-11\right)
$$

4. Prove that $\sum_{\ell=1}^{2 n} \ell(\ell+1)=\frac{4}{3}[n(n+1)(2 n+1)]$ by each of the following two methods:
(a) By mathematical induction on positive integer $n \geq 1$.
(b) By using the identities mentioned in part (b) of question 3 .
5. Evaluate $\frac{1}{2^{90}} z^{91}+(\overline{-i})^{91}+\frac{-2+\sqrt{3} i}{i}$, where $z=-\sqrt{3}+i$. Simplify as much as possible.
6. For each of the following statements, if it is true prove it, and if it is false give a counter example.
(a) $\frac{\bar{z}}{|z|^{2}}=\frac{1}{z}, \quad(z \neq 0) ;$
(b) $\arg (z+\bar{z})=0$;
(c) $\frac{e^{4 \theta^{2} i}\left(e^{\theta i}\right)^{4}}{e^{i^{7}}}=\cos (2 \theta+1)^{2}+i \sin (2 \theta+1)^{2}$.
7. Find all fifth roots of $z=-16 \sqrt{2}-16 \sqrt{2} i$. Write the roots in exponential form and use principal value of their arguments.
