MATH 1210 A03 Assignment 3 Fall 2021

Attempt all questions and show all your work. Some or all questions will be marked.

1. Solve each of the following system of linear equations.

(a) Use Gauss-Jordan elimination to solve

(b) Use Gaussian elimination to solve

2. Determine if $\begin{vmatrix} 1 \\ 1 \\ -1 \end{vmatrix}$ is a basic solution of the following homogeneous system of linear

equations. Show your work.

$$x_1 + 2x_2 + x_3 + 3x_4 - x_5 = 0$$

$$x_1 + 2x_2 + x_3 + 4x_4 = 0$$

$$3x_1 + 6x_2 + 3x_3 + 9x_4 - 3x_5 = 0$$

3. Use Cramer's rule to find *only* the value of x_2 , where a is a positive real number.

$$2x_2 - x_3 + x_4 = -4$$

$$4x_3 + ax_4 = 0$$

$$x_2 - 5x_3 + 2x_4 = -2$$

$$x_1 + 7x_2 + 8x_3 + 6x_4 = 10$$

4. Let $A = \begin{pmatrix} 1 & 2a & a \\ -2 & -2 & a \\ a & 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & -a & -2a \\ 2 & 3 & -2a \\ 0 & 1 & a \end{pmatrix}$. Find all values of a for which det(A+B) = 0. 5. Given that $\begin{vmatrix} a & 1 & e \\ b & d & f \\ c & -1 & g \end{vmatrix} = 10$, use properties of determinant to find $\begin{vmatrix} b+c & d-1 & f+g \\ b+2a & d+2 & f+2e \\ 4c-a & -5 & 4g-e \end{vmatrix}$.

- 6. Let A, B and C be $n \times n$ invertible matrices such that |A| = 2, |B| = -3 and |A + I| = 6. Find determinant of each of the following:
 - (a) $A^2 B^T$;
 - (b) $(C^{-1}A)^{-2}B^3C^{-2}$;
 - (c) $B^{-1}(I + BA^{-1}B^{-1})BA$.
- 7. Determine if each of the following set of vectors are linearly dependent or linearly independent. Show your work.

- (a) $\mathbf{u_1} = \langle 1, 2, -1 \rangle$, $\mathbf{u_2} = \langle 0, 1, 1 \rangle$, $\mathbf{u_3} = \langle 5, 1, 7 \rangle$, $\mathbf{u_4} = \langle 4, -2, 15 \rangle$;
- (b) $\mathbf{u_1} = \langle 1, 2, -1 \rangle$, $\mathbf{u_2} = \langle 0, 1, 1 \rangle$, $\mathbf{u_3} = \langle 5, 1, 7 \rangle$;
- (c) $\mathbf{u_1} = \langle 1, 2, -1, a \rangle$, $\mathbf{u_2} = \langle b, 0, 1, 1 \rangle$, $\mathbf{u_3} = \langle 5, 1, c, 2 \rangle$, $\mathbf{u_4} = \langle 0, 0, 0, 0 \rangle$.
- 8. Let $\mathbf{u} = \langle 1, 2, -1, 5 \rangle$, $\mathbf{v} = \langle 0, 1, 1, 0, \rangle$ and $\mathbf{w} = \langle 3, 4, -2, 15 \rangle$. Show that \mathbf{u} , \mathbf{v} and \mathbf{w} are linearly independent and write the vector $\mathbf{a} = \langle 1, 1, 1, 5 \rangle$ as a linear combination of \mathbf{u} , \mathbf{v} and \mathbf{w} .

9. Let
$$A = \begin{pmatrix} 1 & 1 & -2 \\ 6 & -1 & 4 \\ -3 & 2 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 2 & 3 \\ -6 & -2 & -3 \\ 5 & -1 & -1 \end{pmatrix}$. Find the inverse of the matrix $A + B - I$.