Attempt all questions and show all your work. Some or all questions will be marked.

1. Solve each of the following system of linear equations.
(a) Use Gauss-Jordan elimination to solve

$$
\begin{array}{cl}
3 x_{1}-9 x_{2}+x_{3}+4 x_{4} & =0 \\
x_{1}-3 x_{2} & +2 x_{4}
\end{array}=-1
$$

(b) Use Gaussian elimination to solve

$$
\begin{array}{ccccc}
x_{1} & +2 x_{2} & & -x_{4}+x_{5} & =-1 \\
6 x_{1} & +14 x_{2} & +8 x_{3} & & +18 x_{5}
\end{array}=-\frac{3}{3}=\frac{7}{2}
$$

2. Determine if $\left[\begin{array}{c}1 \\ 1 \\ 1 \\ -1 \\ 1\end{array}\right]$ is a basic solution of the following homogeneous system of linear equations. Show your work.

$$
\begin{aligned}
& x_{1}+2 x_{2}+x_{3}+3 x_{4}-x_{5}=0 \\
& x_{1}+2 x_{2}+x_{3}+4 x_{4}=0 \\
& 3 x_{1}+6 x_{2}+3 x_{3}+9 x_{4}-3 x_{5}=0
\end{aligned}
$$

3. Use Cramer's rule to find only the value of x_{2}, where a is a positive real number.

$$
\begin{aligned}
& 2 x_{2}-x_{3}+x_{4}=-4 \\
& 4 x_{3}+a x_{4}=0 \\
& x_{2}-5 x_{3}+2 x_{4}=-2 \\
& x_{1}+7 x_{2}+8 x_{3}+6 x_{4}=10
\end{aligned}
$$

4. Let $A=\left(\begin{array}{ccc}1 & 2 a & a \\ -2 & -2 & a \\ a & 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ccc}0 & -a & -2 a \\ 2 & 3 & -2 a \\ 0 & 1 & a\end{array}\right)$. Find all values of a for which $\operatorname{det}(A+B)=0$.
5. Given that $\left|\begin{array}{lll}a & 1 & e \\ b & d & f \\ c & -1 & g\end{array}\right|=10$, use properties of determinant to find $\left|\begin{array}{ccc}b+c & d-1 & f+g \\ b+2 a & d+2 & f+2 e \\ 4 c-a & -5 & 4 g-e\end{array}\right|$.
6. Let A, B and C be $n \times n$ invertible matrices such that $|A|=2, \quad|B|=-3 \quad$ and $|A+I|=6$. Find determinant of each of the following:
(a) $A^{2} B^{T}$;
(b) $\left(C^{-1} A\right)^{-2} B^{3} C^{-2}$;
(c) $B^{-1}\left(I+B A^{-1} B^{-1}\right) B A$.
7. Determine if each of the following set of vectors are linearly dependent or linearly independent. Show your work.
(a) $\mathbf{u}_{\mathbf{1}}=\langle 1,2,-1\rangle, \mathbf{u}_{2}=\langle 0,1,1\rangle, \mathbf{u}_{\mathbf{3}}=\langle 5,1,7\rangle, \mathbf{u}_{4}=\langle 4,-2,15\rangle$;
(b) $\mathbf{u}_{1}=\langle 1,2,-1\rangle, \mathbf{u}_{\mathbf{2}}=\langle 0,1,1\rangle, \mathbf{u}_{\mathbf{3}}=\langle 5,1,7\rangle$;
(c) $\mathbf{u}_{\mathbf{1}}=\langle 1,2,-1, a\rangle, \mathbf{u}_{\mathbf{2}}=\langle b, 0,1,1\rangle, \mathbf{u}_{\mathbf{3}}=\langle 5,1, c, 2\rangle, \mathbf{u}_{\mathbf{4}}=\langle 0,0,0,0\rangle$.
8. Let $\mathbf{u}=\langle 1,2,-1,5\rangle, \mathbf{v}=\langle 0,1,1,0$,$\rangle and \mathbf{w}=\langle 3,4,-2,15\rangle$. Show that \mathbf{u}, \mathbf{v} and \mathbf{w} are linearly independent and write the vector $\mathbf{a}=\langle 1,1,1,5\rangle$ as a linear combination of \mathbf{u}, \mathbf{v} and \mathbf{w}.
9. Let $A=\left(\begin{array}{ccc}1 & 1 & -2 \\ 6 & -1 & 4 \\ -3 & 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{ccc}1 & 2 & 3 \\ -6 & -2 & -3 \\ 5 & -1 & -1\end{array}\right)$. Find the inverse of the matrix $A+B-I$.
