MATH 1210 A03 Final Exam Fall 2021

Date and Time: January 20 at 12:30 PM

Duration: 120+30 minutes

Attempt all questions and show your work. Simplify your answers as much as possible.

1. (8 points) Let i be the complex number for which $i^2 = -1$. Use mathematical induction to prove that

$$1 + (1+i) + (1+i)^{2} + (1+i)^{3} + \dots + (1+i)^{n} = i \left[1 - (1+i)^{n+1} \right]$$

for all positive integers $n \ge 1$,

2. Consider the polynomial equation of P(x) = 0 where

$$P(x) = x^4 - x^3 - x^2 - x - 2.$$

- (a) (3 points) What are the number of possible positive and negative real zeros of P(x)?
- (b) (7 points) Find all zeros of P(x).

3. Consider the plane Π : 2x - y + z = 1 and the line ℓ : $\frac{x-2}{-1} = \frac{y-3}{-2} = \frac{z+1}{1}$.

- (a) (4 points) Find the intersection point of the plane Π and the line $\ell.$
- (b) (4 points) Find an equation for the plane Π_1 through the origin and parallel to the plane Π .

4. (10 points) Find all **basic** solutions of the homogeneous linear system

5. (7 points) Let a be a negative real number. Use Cramer's rule to find only the value of z.

$$ax + z = a - 2$$
$$x + y + z = -3$$
$$3x - y + 2z = 1$$

6. Let $A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & \frac{11}{3} \\ 0 & 3 & 2 \end{pmatrix}$.

(a) (7 points) Find inverse of A^T .

(b) (3 points) Use part (a) to solve the linear system $A\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} -1\\ -2\\ 0 \end{pmatrix}$.

7. (7 points) Let $A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 2 & -1 & 0 & 0 \\ 3 & 0 & 2 & 0 \\ -1 & 0 & 1 & 1 \end{pmatrix}$. First show that A is invertible and then find the entry of A^{-1} that lies in the fourth row and first rate.

that lies in the fourth row and first column. Show your work. (You do not need to find all entries of A^{-1})

- 8. Let $\mathbf{u} = \langle -1, 0, 1 \rangle$, $\mathbf{v} = \langle 3, 2, 1 \rangle$ and $\mathbf{w} = \langle 0, 1, 2 \rangle$.
 - (a) (6 points) Prove that the vectors $\mathbf{u} \mathbf{v}$, $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} \times \mathbf{v}$ are linearly independent.
 - (b) (8 points) Prove that the vectors \mathbf{u} , \mathbf{v} and \mathbf{w} are linearly dependent and express \mathbf{w} as a linear combination of \mathbf{u} and \mathbf{v} .

9. (8 points) A linear transformation T_1 from \mathbb{R}^2 to \mathbb{R}^2 maps vectors $\mathbf{v} = \langle v_1, v_2 \rangle$ to $\mathbf{v}' = \langle v'_1, v'_2 \rangle$ according to T_1 : $v'_1 = 5v_1 + 3v_2$ $v'_2 = 2v_1 + v_2$. Also a linear transformation T_2 from \mathbb{R}^2 to \mathbb{R}^2 is defined by $T_2(\langle v_1, v_2 \rangle) = \langle v_1 + 2v_2, 6v_1 - v_2 \rangle$. Find associated matrices for linear transformations $2T_1 - 3T_2$ and T_1^{-1} .

10. Let
$$A = \begin{pmatrix} 0 & 2 \\ 2 & -3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & 0 & 0 \\ 4 & -1 & 0 \\ 7 & 3 & 5 \end{pmatrix}$.

- (a) (6 points) Find all eigenvalues of A and all eigenvalues of B.
- (b) (7 points) Find two eigenvectors of A such that they are perpendicular. Show your work.