## MATH 1210 A03 Final Exam Fall 2021

Date and Time: January 20 at 12:30 PM
Duration: $120+30$ minutes

Attempt all questions and show your work. Simplify your answers as much as possible.

1. (8 points) Let $i$ be the complex number for which $i^{2}=-1$. Use mathematical induction to prove that

$$
1+(1+i)+(1+i)^{2}+(1+i)^{3}+\cdots+(1+i)^{n}=i\left[1-(1+i)^{n+1}\right]
$$

for all positive integers $n \geqslant 1$,
2. Consider the polynomial equation of $P(x)=0$ where

$$
P(x)=x^{4}-x^{3}-x^{2}-x-2 .
$$

(a) (3 points) What are the number of possible positive and negative real zeros of $P(x)$ ?
(b) (7 points) Find all zeros of $P(x)$.
3. Consider the plane $\Pi: 2 x-y+z=1$ and the line $\ell: \frac{x-2}{-1}=\frac{y-3}{-2}=\frac{z+1}{1}$.
(a) (4 points) Find the intersection point of the plane $\Pi$ and the line $\ell$.
(b) (4 points) Find an equation for the plane $\Pi_{1}$ through the origin and parallel to the plane $\Pi$.
4. (10 points) Find all basic solutions of the homogeneous linear system

$$
\begin{array}{rlll}
-x_{1}+2 x_{2} & +x_{3} & -2 x_{4} & =0 \\
& +x_{3}-2 x_{4} & =0 \\
-2 x_{1}+4 x_{2} & & +x_{5} & =0
\end{array} .
$$

5. (7 points) Let $a$ be a negative real number. Use Cramer's rule to find only the value of $z$.

$$
\begin{aligned}
& a x+z=a-2 \\
& x+y+z=-3 \\
& 3 x-y+2 z=1
\end{aligned} .
$$

6. Let $A=\left(\begin{array}{ccc}1 & 0 & 2 \\ 2 & -1 & \frac{11}{3} \\ 0 & 3 & 2\end{array}\right)$.
(a) (7 points) Find inverse of $A^{T}$.
(b) (3 points) Use part (a) to solve the linear system $A\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-1 \\ -2 \\ 0\end{array}\right)$.
7. (7 points) Let $A=\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 2 & -1 & 0 & 0 \\ 3 & 0 & 2 & 0 \\ -1 & 0 & 1 & 1\end{array}\right)$. First show that $A$ is invertible and then find the entry of $A^{-1}$ that lies in the fourth row and first column. Show your work. (You do not need to find all entries of $A^{-1}$ )
8. Let $\mathbf{u}=\langle-1,0,1\rangle, \mathbf{v}=\langle 3,2,1\rangle$ and $\mathbf{w}=\langle 0,1,2\rangle$.
(a) (6 points) Prove that the vectors $\mathbf{u}-\mathbf{v}, \mathbf{u}+\mathbf{v}$ and $\mathbf{u} \times \mathbf{v}$ are linearly independent. .
(b) (8 points) Prove that the vectors $\mathbf{u}, \mathbf{v}$ and $\mathbf{w}$ are linearly dependent and express $\mathbf{w}$ as a linear combination of $\mathbf{u}$ and $\mathbf{v}$.
9. (8 points) A linear transformation $T_{1}$ from $\mathbb{R}^{2}$ to $\mathbb{R}^{2}$ maps vectors $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ to $\mathbf{v}^{\prime}=\left\langle v_{1}^{\prime}, v_{2}^{\prime}\right\rangle$ according to $T_{1}$ : $v_{1}^{\prime}=5 v_{1}+3 v_{2}$
$v_{2}^{\prime}=2 v_{1}+v_{2}$.
Also a linear transformation $T_{2}$ from $\mathbb{R}^{2}$ to $\mathbb{R}^{2}$ is defined by $T_{2}\left(\left\langle v_{1}, v_{2}\right\rangle\right)=\left\langle v_{1}+2 v_{2}, 6 v_{1}-v_{2}\right\rangle$. Find associated matrices for linear transformations $2 T_{1}-3 T_{2}$ and $T_{1}^{-1}$.
10. Let $A=\left(\begin{array}{cc}0 & 2 \\ 2 & -3\end{array}\right)$ and $B=\left(\begin{array}{ccc}2 & 0 & 0 \\ 4 & -1 & 0 \\ 7 & 3 & 5\end{array}\right)$.
(a) (6 points) Find all eigenvalues of $A$ and all eigenvalues of $B$.
(b) (7 points) Find two eigenvectors of $A$ such that they are perpendicular. Show your work.
