MATH 1210 Midterm Exam Fall 2021

Date and Time: October 25 at 6:00 PM
Duration: $60+15$ minutes

Attempt all questions and show your work. Simplify your answers as much as possible.

1. (8 points) Consider the matrix

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Use induction on n to show that for all integers $n \geqslant 1$ we have

$$
A^{4 n}=\mathrm{I}_{2}
$$

where I_{2} is the 2×2 identity matrix.
2. (5 points) Write the following sum in sigma notation. Start summation index from 1.

$$
-3 a^{4}+8 a^{5}-13 a^{6}+18 a^{7}-23 a^{8}+\cdots+48 a^{13}
$$

3. (11 points) Simplify the complex expression below and then write it in Cartesian form.

$$
\left[\overline{\frac{1+3 i}{-2+i}}\right]^{100}
$$

4. (10 points) Consider the polynomial

$$
P(x)=x^{3}+3 x^{2}+4 x+12
$$

Given is that $2 i$ is a root of $P(x)=0$. Find the remaining roots of $P(x)=0$, and write $P(x)$ as a product of linear factors.
5. True or false? Briefly justify your answer.
(a) (2 points) There exist two matrices of size 3×3, say A and B, such that $A B=B A$.
(b) (2 points) There exist two square matrices of the same size, A and B, such that $A B \neq B A$.
(c) (2 points) If A is a matrix of any size, then the expression $A^{T} A$ exists.
(d) (2 points) Any polynomial of degree n can be written as a product of exactly n linear factors with real coefficients.
6. (8 points) Consider three vectors

$$
\mathbf{u}=3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+a \hat{\mathbf{k}}, \quad \mathbf{v}=2 \hat{\mathbf{i}}+b \hat{\mathbf{j}}+\hat{\mathbf{k}}, \quad \mathbf{w}=-4 \hat{\mathbf{i}}+(b-2) \hat{\mathbf{j}}+(b+8) \hat{\mathbf{k}}
$$

where a and b are integers. Find values of a and b such that \mathbf{u} is perpendicular to \mathbf{v} and $2 \mathbf{u}+\mathbf{w}=\mathbf{v}$.
7. Consider the lines

$$
\ell_{1}: x=4-3 t, y=2 t, z=1+5 t, \quad \quad \ell_{2}: \quad \frac{x-4}{4}=\frac{y}{1}=\frac{z-1}{2}
$$

(a) (3 points) Find the intersection point of the lines ℓ_{1} and ℓ_{2}. Justify your answer.
(b) (7 points) Find an equation of the plane that contains both ℓ_{1} and ℓ_{2}.

