Attempt all questions and show all your work. Some or all questions will be marked.

1. Use mathematical induction on integer n to prove each of the following statements.
(a) $-1 \cdot 3+2 \cdot 5-3 \cdot 7+4 \cdot 9-\ldots+(2 n)(4 n+1)=n(4 n+3)$ for $n \geq 1$;
(b) $\quad \sum_{j=1}^{n} \frac{(j-1) \cdot j!}{2^{j}}=\frac{(n+1)!}{2^{n}}-1$ for $n \geq 1$;
(c) $3^{n}+2 n^{2}-1$ is divisible by 4 for $n \geq 3$;
(d) Let $x \geq 1$ be a fixed real number. Prove that $(2 x-1)^{n} \geq 2 x^{n}-1$ for $n \geq 1$.
2. Write the following sum in sigma notation.

$$
\frac{21 \cdot 5}{2}-\frac{19 \cdot 9}{4}+\frac{17 \cdot 13}{8}-\frac{15 \cdot 17}{16}+\ldots+\frac{5 \cdot 37}{512}
$$

3. Use the identities

$$
\sum_{k=1}^{m} k=\frac{1}{2}[m(m+1)], \quad \sum_{k=1}^{m} k^{2}=\frac{1}{6}[m(m+1)(2 m+1)], \quad \sum_{k=1}^{m} k^{3}=\frac{1}{4}\left[m^{2}(m+1)^{2}\right]
$$

to evaluate the sum

$$
\sum_{k=-100}^{100}\left((k+101)^{3}-3 k-305\right)
$$

You do not need to simplify your final answer to a single number: for example, expressions like $\frac{51 \cdot 52 \cdot 103}{6}$ do not require further simplification.
4. Consider the sum $n(n+2)+(n+1)(n+3)+(n+2)(n+4)+\ldots+3 n(3 n+2)$.
(a) Write the sum in sigma notation.
(b) Use the identities from question 3 to prove that for $n \geq 2$

$$
n(n+2)+(n+1)(n+3)+(n+2)(n+4)+\ldots+3 n(3 n+2)=\frac{13 n\left(2 n^{2}+3 n+1\right)}{3}
$$

5. Write the following complex numbers in Cartesian from. Simplify as much as possible.
(a) $\frac{(2-3 i)(3+5 i)}{1+\sqrt{2} i}$
(b) $\frac{\overline{3 e^{7 \pi i / 20}} \cdot i^{27}}{4 e^{22 \pi i / 5}}$
(c) $\frac{(-\sqrt{2}+\sqrt{6} i)^{10}}{(1-i)^{26}}$
6. Find all complex solutions of the equation $8 z^{4}-\sqrt{3}-i=0$. Write the roots in exponential form and use principal value of their arguments.
